

WTIMTS

Wave and turbulence interaction and measurement at tidal sites End of project summary

M. Togneri, A. Williams & I. Masters

What need does WTIMTS address?

- ADCPs are the most important tool for measuring turbulence at tidal energy sites
- However, it is difficult for an ADCP to distinguish real turbulence from waverelated pseudo-turbulence
- At sites with significant waves, estimates of turbulent kinetic energy *k* can be two orders of magnitude above the true level
- WTIMTS addresses the need for a consistent, broadly-applicable method to separate wave & turbulence effects

How does WTIMTS address this?

- Previous solutions have used one of two properties of waves measured by ADCPs:
 - They are spectrally local, OR
 - They are correlated with other wave estimates
- This has motivated either a *spectral* or *statistical* filtering approach
- However, there is no technical barrier to using both types of filter: WTIMTS improves on past efforts using a combined filter
- A spectral filter partially isolates wave activity from velocity records, then a statistical filter is applied to the whole record of *k* values

The stopped velocities contain only wave activity, the passed velocities contain

• We find the peak at each moment in time,

decide if it is wave-related, and if it is we

turbulent activities with a remainder of waves

A wavelet synchro-squeeze transform is used to obtain a periodogram-like representation of the spectral peaks for short bursts of velocity measurements (typically 15 minutes)

Swansea Universitv How does the spectral filter work? Prifysgol Abertawe

> Spectral density (m²s⁻²Hz⁻¹) 0.05 (Hz) 0.04 0.03 0.02 0.01 0 200 800 400 600 Ω Time (s)

Offshore Superge Renewable Eneray

How does the statistical filter work?

- Empirical orthogonal function analysis separates the calculated k values into a sum of space and time modes
- The largest modes explain the largest proportion of the autocovariance
 - If waves dominate, they will be very strongly associated with the first mode
 - This can be confirmed by correlation of first mode with other wave measures
- Subtracting the first mode therefore removes most remaining wave effects

How well does the filter perform?

- Compared to both single-filter methods, the combined filter clearly improves removal of wave influence from estimated k:
 - Near-surface maxima are reduced
 - Removal of strong wave events is more complete
- Wave-driven pseudo-k is also more satisfactory:
 - No significant semidiurnality
 - Correctly vanishes at times of low wave action

How well does the filter perform?

- As well as qualitative assessment, if we have independent wave data we can quantify the improvement in estimates of wave pseudo-k
- More aggressive spectral filters (covering a wider frequency range and removing more power) show better improvements
- Improvement in k cannot be directly quantified, because independent estimates of k are not available

What happens next?

HTogn / WTIMTS Public

<> Code 💿 Issues 🚯 Pull requests 💿 Actions 🖽 Projects 🖽 Wiki 🕕 Security 🗠 In

- The code for the filter has been documented and made freely available: github.com\MTogn\WTIMTS
- Virtual velocity data could allow quantifying filter improvement in estimates of *k*
- Analyse data from other sites to see how method performs at more/less sheltered locations

<mark>양 main → 양 1</mark> branch ⓒ 0 tags	Go	to file Code
MTogn Previous commit did not us	e correctly updated gitignore 4d94ab7 on Aug 6, 20	21 🖸 24 commits
WADZSpecificScripts	Some changes to generalise mainScript for multiple data sets - specif	7 months ago
🗅 .gitignore	Previous commit did not use correctly updated gitignore	7 months age
🖺 EOF.m	Added and checked functional EOF decomposition	12 months ag
🖺 EOFWrapper.m	Added and checked functional EOF decomposition	12 months ag
🗅 NaNFilterv2.m	Some changes to generalise mainScript for multiple data sets - specif	7 months ag
🗅 README.md	First commit	13 months ag
TKEArrayErrorCalc.m	Added calculation of theoretical wave pseudo-TKE; first version of er	11 months ag
🗅 burstLoading.m	Some changes to generalise mainScript for multiple data sets - specif	7 months ag
CalcApparentWaveTKE.m	Renamed variables and improved comments for consistency with user g	8 months ag
CalcBurst4BeamTKE.m	Renamed variables and improved comments for consistency with user g	8 months ag
CalcBurst4BeamTKETest.m	Some reordering of functionality, basic functions for depth	12 months ag
dataPreprocessing.m	Some changes to generalise mainScript for multiple data sets - specif	7 months ag
🗅 excessTiltFilter.m	First commit	13 months ag
importPartracBurst.m	Some changes to generalise mainScript for multiple data sets - specif	7 months ag
iterCalcWyno_WayesCurrents m	Added calculation of theoretical wave pseudo-TKF: first version of er	11 months ag

