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BACKGROUND
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Installation, inspection, operation, and maintenance
activities at ORE sites are governed by strict
weather limits

Weather delays have significant impacts:

— Wikinger Wind Farm: £17 million additional
cost due to inaccurate forecasts during
installation

Weather forecasts used in decision making currently
provided by numerical models

More accurate, turbine-specific forecasts can
provide improved decision-making during
installation, operation, and maintenance processes
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AIMS AND OBJECTIVES

e MaLCOM aims to demonstrate a machine learning
system that can integrate metocean sensor
networks and physical models, to improve the
provision of met-ocean data

* Aims:
— Develop low computational cost machine

learning methods using hindcast model runs
and real-time in-situ measurements to:

* Provide spatial nowcasts
* Provide short-term forecasts

Motivation and Objective

Temporal-spatial wave
distribution

Physics-based models In-situ Observations

High-fidelity Relatively reliable
High-computational cost Sparse data set

Objective: Develop machine learning models to act as surrogates that
learn the nonlinear mapping from fixed points to spatially distributed
wave data across a region
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SYSTEM OVERVIEW

e Forecasting methodology divided into two models

that are CoupIEd: Step 1: Conduct gap filling @
(Method in §2.2)
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1. Spatial Nowcasting O dtaset
Relate the conditions at point locations to the
conditions throughout the model domain

2. Temporal Point Forecasting
.. . . Temporal Model Prediction
Use the conditions at the in-situ measurement SLETIT
ns X ngx D,
locations to forecast future conditions at the Denormalization & Reconstruction
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Spatial model Outputs (H;

* Coupling models enables spatial forecasting

Spatial model by Chen et al. (2021)
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SURROGATE MODEL DEVELOPMENT (SPATIAL NOWCASTING)

* Model training
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NOWCASTING RESULTS: SURROGATE MODEL ACCURACY

Comparison among SWAN, Surrogate model with Real Data Input, and Buoy Measurement in Year 2010 @ WaveHub
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The surrogate model consistently matches

the real data better than the hindcast

T..0, has a dramatic improvement

correlation across the site

Surrogate model captures the spatial

| e | rwse | RwsE/AvG

SWAN
Surrogate
SWAN
Surrogate
SWAN
Surrogate
SWAN

Surrogate

0.8521
0.9074
-0.8043
-0.1473
-0.0257
0.7144
0.2263
0.5537

J. Chen, A. C. Pillai, L. Johanning, and . Ashton, “Using Machine Learning to Derive Spatial Wave Data: A Case Study for a Marine Energy Site,”
&y Environmental Modelling & Software, vol. 142, no. April, p. 105066, 2021, doi: 10.1016/j.envsoft.2021.105066.

0.3218
0.2547
68.1254
54.3238
1.3903
0.7336
2.4852
1.8876

0.1901
0.1504
0.3114
0.2483
0.2371
0.1251
0.2626
0.1994

UNIVERSITY OF

EXETER



FORECASTING FRAMEWORK
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SPATIO-TEMPORAL MODEL PERFORMANCE - WAVEHUB
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The proposed model framework has a similar level of accuracy as
the UKMO model across all the wave parameters.

Scatter plots of the proposed model framework show increased
scatter with increased forecast lead time, while not apparent for

UKMO model.

For both Tz and Hs, the UKMO model appears to slightly over-
predict at large values while the proposed model framework

under-predicts.
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SPATIO-TEMPORAL MODEL PERFORMANCE - FABTEST
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The proposed model framework and the UKMO model are less
accurate at FabTest than at WaveHub.

The proposed model framework is consistently less accurate (i.e.
higher errors) and the UKMO model is more accurate in all
statistics for Hs and Tz over the forecast time horizon.

The proposed model framework shows a group of results with
consistent under-prediction of Hs.
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SPATIO-TEMPORAL MODEL PERFORMANCE - FABTEST
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CONCLUSION

Key Points:

* A new multivariate spatio-temporal machine learning framework is proposed for real-time forecasting of waves
across a region.

* The temporal forecast uses the Long Short-Term Memory neural network, while highlighting the importance of
feature selection.

* Our wave forecasts up to 12 hours ahead are found to have very similar errors to traditional physics-based
models such as those used by UK Met Office, but require far less computational power.

Future work:

* The framework is of immediately interest to wind farm operators, autonomous marine systems and for coastal
applications, to give instant access to spatial wave data.

* Further ahead, this system could be used as part of more autonomous operations such as site management
systems or mobile autonomous measurements.
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CONCLUSIONS

e Preliminary results indicate that the surrogate modelling method enables improvements compared to a
hindcast both in respect to accuracy and time efficiency

* Spatial nowcasting methodology is able to leverage real-time in-situ measurements to estimate entire domain

* Forecasting methodology is shown to have similar errors to physics-based forecast, though requires significantly
less computational effort
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ONGOING AND FUTURE WORK

e Several studies with UKMO to augment and improve forecasts
* Deploy considering other regions and hindcast models
* Extending these methods to estimate and possibly correct model bias

* Industrial case studies with partners considering turbine access, weather windows, and vessel planning
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