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BACKGROUND

• Installation, inspection, operation, and maintenance 
activities at ORE sites are governed by strict 
weather limits

• Weather delays have significant impacts:

– Wikinger Wind Farm: £17 million additional 
cost due to inaccurate forecasts during 
installation

• Weather forecasts used in decision making currently 
provided by numerical models

• More accurate, turbine-specific forecasts can 
provide improved decision-making during 
installation, operation, and maintenance processes

Source: BVG Associates



AIMS AND OBJECTIVES

• MaLCOM aims to demonstrate a machine learning 
system that can integrate metocean sensor 
networks and physical models, to improve the 
provision of met-ocean data

• Aims:

– Develop low computational cost machine 
learning methods using hindcast model runs 
and real-time in-situ measurements to:

• Provide spatial nowcasts

• Provide short-term forecasts

Motivation and Objective

High-fidelity
High-computational cost

Relatively reliable
Sparse data set

Physics-based models In-situ Observations

Temporal-spatial wave 
distribution

Objective: Develop machine learning models to act as surrogates that
learn the nonlinear mapping from fixed points to spatially distributed
wave data across a region



SYSTEM OVERVIEW

• Forecasting methodology divided into two models 
that are coupled: 

1. Spatial Nowcasting
Relate the conditions at point locations to the 
conditions throughout the model domain

2. Temporal Point Forecasting
Use the conditions at the in-situ measurement 
locations to forecast future conditions at the 
same location

• Coupling models enables spatial forecasting



SURROGATE MODEL DEVELOPMENT (SPATIAL NOWCASTING)

• Model training

– Inputs: SWAN conditions at buoy locations

– Outputs: SWAN conditions elsewhere in domain

• Model “operational mode”

– Inputs: Buoy 
measurements

– Outputs: Estimated 
nowcast conditions 
elsewhere in domain

– Validation Outputs:
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J. Chen, A. C. Pillai, L. Johanning, and I. Ashton, “Using Machine Learning to Derive Spatial Wave Data: A Case Study for a Marine Energy Site,” 
Environmental Modelling & Software, vol. 142, no. April, p. 105066, 2021, doi: 10.1016/j.envsoft.2021.105066. 



NOWCASTING RESULTS: SURROGATE MODEL ACCURACY

R2 RMSE RMSE/AVG

Hs

SWAN 0.8521 0.3218 0.1901

Surrogate 0.9074 0.2547 0.1504

mDir
SWAN -0.8043 68.1254 0.3114

Surrogate -0.1473 54.3238 0.2483

Tm02

SWAN -0.0257 1.3903 0.2371

Surrogate 0.7144 0.7336 0.1251

Tp

SWAN 0.2263 2.4852 0.2626

Surrogate 0.5537 1.8876 0.1994

• The surrogate model consistently matches 
the real data better than the hindcast

• Tm02 has a dramatic improvement

• Surrogate model captures the spatial 
correlation across the site

J. Chen, A. C. Pillai, L. Johanning, and I. Ashton, “Using Machine Learning to Derive Spatial Wave Data: A Case Study for a Marine Energy Site,” 
Environmental Modelling & Software, vol. 142, no. April, p. 105066, 2021, doi: 10.1016/j.envsoft.2021.105066. 
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FORECASTING FRAMEWORK



SPATIO-TEMPORAL MODEL PERFORMANCE - WAVEHUB

• The proposed model framework has a similar level of accuracy as 
the UKMO model across all the wave parameters.

• Scatter plots of the proposed model framework show increased 
scatter with increased forecast lead time, while not apparent for 
UKMO model.

• For both Tz and Hs, the UKMO model appears to slightly over-
predict at large values while the proposed model framework 
under-predicts. 



SPATIO-TEMPORAL MODEL PERFORMANCE - FABTEST

• The proposed model framework and the UKMO model are less 
accurate at FabTest than at WaveHub. 

• The proposed model framework is consistently less accurate (i.e. 
higher errors) and the UKMO model is more accurate in all 
statistics for Hs and Tz over the forecast time horizon.

• The proposed model framework shows a group of results with 
consistent under-prediction of Hs. 



SPATIO-TEMPORAL MODEL PERFORMANCE - FABTEST

Empirical distribution of SWAN model 
shows waves from SE are omitted 
from boundary conditions.

• At the FaBTest buoy, the surrogate model has a subset with clear 
errors

• Errors when waves arrive from the South East is consistent with the 
original wave model



CONCLUSION

Key Points:

• A new multivariate spatio-temporal machine learning framework is proposed for real-time forecasting of waves 
across a region.

• The temporal forecast uses the Long Short-Term Memory neural network, while highlighting the importance of 
feature selection.

• Our wave forecasts up to 12 hours ahead are found to have very similar errors to traditional physics-based 
models such as those used by UK Met Office, but require far less computational power.

Future work:

• The framework is of immediately interest to wind farm operators, autonomous marine systems and for coastal 
applications, to give instant access to spatial wave data. 

• Further ahead, this system could be used as part of more autonomous operations such as site management 
systems or mobile autonomous measurements.



CONCLUSIONS

• Preliminary results indicate that the surrogate modelling method enables improvements compared to a 
hindcast both in respect to accuracy and time efficiency

• Spatial nowcasting methodology is able to leverage real-time in-situ measurements to estimate entire domain

• Forecasting methodology is shown to have similar errors to physics-based forecast, though requires significantly 
less computational effort
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ONGOING AND FUTURE WORK

• Several studies with UKMO to augment and improve forecasts

• Deploy considering other regions and hindcast models

• Extending these methods to estimate and possibly correct model bias

• Industrial case studies with partners considering turbine access, weather windows, and vessel planning


