MACHINE LEARNING FOR LOW-COST OFFSHORE MODELLING (MALCOM)

Ajit C. Pillai Ian Ashton Jiaxin Chen

April 2022 Supergen ORE Hub FlexFund Project – Final Results

Fishe

EIVA

UNIVERSITY OF

H

S FAR

OVERVIEW

1. Project Objectives

- Background
- Project Aims & Objectives

2. Progress

- Surrogate model methodology
- Nowcasting results
- Forecasting methodology
- Forecasting & benchmarking results

3. Further Work and Summary

• Case Study at an ORE Site

BACKGROUND

- Installation, inspection, operation, and maintenance activities at ORE sites are governed by strict weather limits
- Weather delays have significant impacts:
 - Wikinger Wind Farm: £17 million additional cost due to inaccurate forecasts during installation
- Weather forecasts used in decision making currently provided by numerical models
- More accurate, turbine-specific forecasts can provide improved decision-making during installation, operation, and maintenance processes

AIMS AND OBJECTIVES

- MaLCOM aims to demonstrate a machine learning system that can integrate metocean sensor networks and physical models, to improve the provision of met-ocean data
- Aims:
 - Develop low computational cost machine learning methods using hindcast model runs and real-time in-situ measurements to:
 - Provide spatial nowcasts
 - Provide short-term forecasts

Motivation and Objective Temporal-spatial wave distribution **Physics-based models** In-situ Observations Buoy3: Perranporth **Buoy4: Wave Hub** Buoy1: Penzance Buoy2: Looe Bay **High-fidelity Relatively reliable** Sparse data set High-computational cost

Objective: Develop **machine learning** models to act as surrogates that learn the **nonlinear mapping** from fixed points to spatially distributed wave data across a region

SYSTEM OVERVIEW

- Forecasting methodology divided into two models that are coupled:
 - Spatial Nowcasting Relate the conditions at point locations to the conditions throughout the model domain
 - 2. Temporal Point Forecasting Use the conditions at the in-situ measurement locations to forecast future conditions at the same location
- Coupling models enables spatial forecasting

SURROGATE MODEL DEVELOPMENT (SPATIAL NOWCASTING)

- Model training
 - Inputs: SWAN conditions at buoy locations
 - Outputs: SWAN conditions elsewhere in domain
- Model "operational mode"
 - Inputs: Buoy measurements
 - Outputs: Estimated nowcast conditions elsewhere in domain
 - Validation Outputs:
 Wave Hub

51.00

SWAN Hsig 2010-09-08 00:00

NOWCASTING RESULTS: SURROGATE MODEL ACCURACY

- The surrogate model consistently matches the real data better than the hindcast
- T_{m02} has a dramatic improvement
- Surrogate model captures the spatial correlation across the site

		R2	RMSE	RMSE/AVG
H _s	SWAN	0.8521	0.3218	0.1901
	Surrogate	0.9074	0.2547	0.1504
mDir	SWAN	-0.8043	68.1254	0.3114
	Surrogate	-0.1473	54.3238	0.2483
T _{m02}	SWAN	-0.0257	1.3903	0.2371
	Surrogate	0.7144	0.7336	0.1251
Т _р	SWAN	0.2263	2.4852	0.2626
	Surrogate	0.5537	1.8876	0.1994

FORECASTING FRAMEWORK

SPATIO-TEMPORAL MODEL PERFORMANCE - WAVEHUB

- The proposed model framework has a similar level of accuracy as the UKMO model across all the wave parameters.
- Scatter plots of the proposed model framework show increased scatter with increased forecast lead time, while not apparent for UKMO model.
- For both Tz and Hs, the UKMO model appears to slightly overpredict at large values while the proposed model framework under-predicts.

SPATIO-TEMPORAL MODEL PERFORMANCE - FABTEST

- The proposed model framework and the UKMO model are less accurate at FabTest than at WaveHub.
- The proposed model framework is consistently less accurate (i.e. higher errors) and the UKMO model is more accurate in all statistics for Hs and Tz over the forecast time horizon.
- The proposed model framework shows a group of results with consistent under-prediction of Hs.

SPATIO-TEMPORAL MODEL PERFORMANCE - FABTEST

• Proportional Error < 0.3 Proportional Error >= 0.3 H^s (m) 2020-01 2020-02 2020-04 2020-05 2020-07 2020-08 2020-03 2020-06 2020-09 T_z (s) 2020-01 2020-02 2020-03 2020-04 2020-05 2020-06 2020-07 2020-08 2020-09 T_m01 (s) 2020-01 2020-02 2020-03 2020-04 2020-05 2020-06 2020-07 2020-08 2020-09 300 200 -ر 100 ا 2020-02 2020-03 2020-01 2020-04 2020-05 2020-06 2020-07 2020-08 2020-09

 At the FaBTest buoy, the surrogate model has a subset with clear errors

(c)

• Errors when waves arrive from the South East is consistent with the original wave model

CONCLUSION

Key Points:

- A new multivariate spatio-temporal machine learning framework is proposed for real-time forecasting of waves across a region.
- The temporal forecast uses the Long Short-Term Memory neural network, while highlighting the importance of feature selection.
- Our wave forecasts up to 12 hours ahead are found to have very similar errors to traditional physics-based models such as those used by UK Met Office, but require far less computational power.

Future work:

- The framework is of immediately interest to wind farm operators, autonomous marine systems and for coastal applications, to give instant access to spatial wave data.
- Further ahead, this system could be used as part of more autonomous operations such as site management systems or mobile autonomous measurements.

CONCLUSIONS

- Preliminary results indicate that the surrogate modelling method enables **improvements** compared to a hindcast both in respect to accuracy and time efficiency
- Spatial nowcasting methodology is able to leverage real-time in-situ measurements to estimate entire domain
- Forecasting methodology is shown to have similar errors to physics-based forecast, though requires significantly less computational effort

Project Publications:

[1] Nowcasting model: J. Chen, A. C. Pillai, L. Johanning, and I. Ashton, "Using Machine Learning to Derive Spatial Wave Data: A Case Study for a Marine Energy Site," Environmental Modelling & Software, vol. 142, no. April, p. 105066, 2021, doi: 10.1016/j.envsoft.2021.105066.

[2] Full spatio-temporal forecasting model: J. Chen, I. Ashton, E. Steele, A. C. Pillai, "A Real-Time Spatio-Temporal Machine Learning Framework for the Prediction of Nearshore Wave Conditions" (Submitted)

[3] Gap filling: Chen, J., Ashton, I. G. C., & Pillai, A. C. (2022). Wave record gap-filling using a low-rank tensor completion model. ASME 41st International Conference on Ocean, Offshore and Arctic Engineering (OMAE2022).

ONGOING AND FUTURE WORK

- Several studies with UKMO to augment and improve forecasts
- Deploy considering other regions and hindcast models
- Extending these methods to estimate and possibly correct model bias
- Industrial case studies with partners considering turbine access, weather windows, and vessel planning

