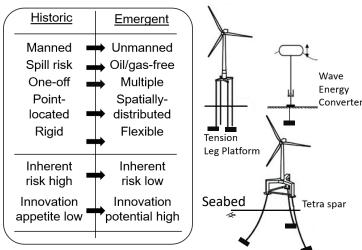
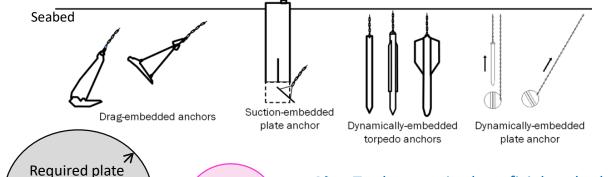
Development of an Integrated Anchor Model via Industry Engagement

Supergen

Dr Katherine Kwa, University of Southampton

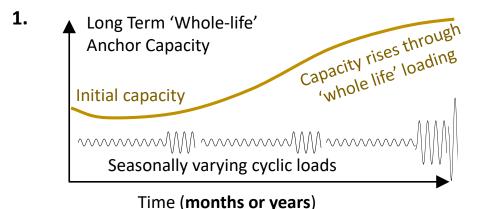

The contrasting design challenge of past oil and gas facilities and future floating ORE facilities:

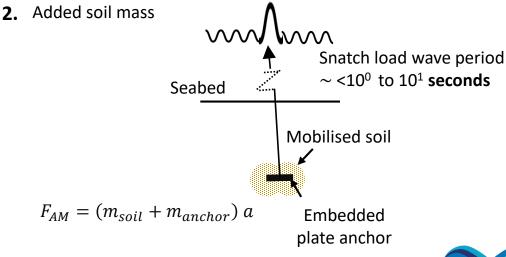

Wheatstone project (https://australia.chevron.com/ourbusinesses/wheatstone-project)

anchor size from

traditional design

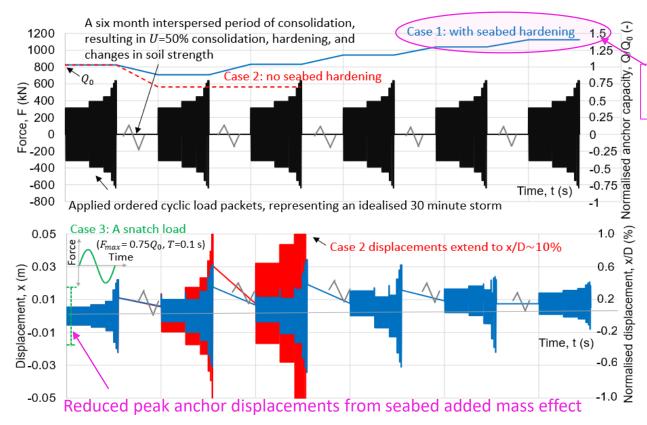
These emergent floating facilities will need to be supported by anchoring systems, e.g.

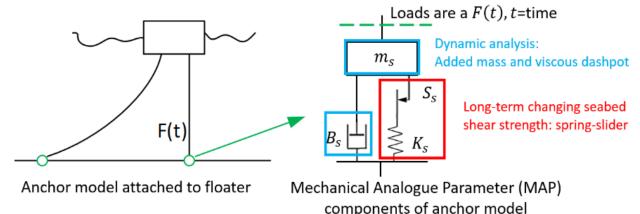

Optimised


design

Aim: To characterise beneficial seabed-anchor effects → enhanced anchor capacity: smaller, more efficient and cost effective anchoring systems

'Hidden' anchor capacities




Outcomes:

Developed a numerical computational 'macro model' in collaboration with the Norwegian Geotechnical Institute (NGI) and the Norwegian SFI BLUES project. The macro model:

- 1. captures 'hidden' anchor capacity enhancements
- 2. allows for **easy integration** of soil-anchor interactions into mooring analyses via using 'smart' mechanical analogue parameter (MAP) components (i.e. spring-slider, dashpots and added mass elements) to represent different soil-anchor interactions that evolve through the facility life.

Whole-life (a) force response of macro model allowing for consolidation and (b) the resulting displacements during cyclic loading (Cases 1 and 2) or a single snatch load (Case 3)

Schematic of anchorage, consisting mechanical analogue parameter (MAP) components connected to a floating ORE facility

Up to 50% extra anchor capacity & potential halve required anchor size

The macro model

- efficiently predicts changes in anchor capacity over a multiscale hierarchy
 of time process from wave period loads loads (10° to 10¹ s) through to
 geotechnical consolidation durations (10° s) through to full facility life
 (10¹² s)
- provides a new basis for assessing the through-life changes in geotechnical anchor capacity
- 3. enables a better understanding of the **fully coupled soil-anchoring mooring** behaviour of ORE infrastructure over its operational lifetime

Further reading

Kwa et al. (2022) A numerical macro model to simulate the whole life response of anchors for floating offshore renewable energy systems ASME 2022, 41st Int Conf. on Ocean, Offshore & Arctic Engineering, OMAE 2022.

Kwa et al. (2022) Report to NGI: A Whole-life anchor macro model for floating offshore systems (UoS GEO: 21010)