### Tidal Turbine Benchmarking Project: Stage II – Head Waves

Oxford: Richard Willden, Xiaosheng Chen, Nijmeh Marouf, Yadong Han, Sam Tucker Harvey, Ian Campbell, Chris Vogel, Federico Zilic de Arcos

Bath: Anna Young, Ian Benson, Elias Marchetti

Edinburgh: Ross Calvert

Hull: Jim Gilbert, Kaushal Bhavsar, Tom Allsop

Manchester: Tim Stallard, Hannah Mullings

31st October 2025

This project is being funded jointly by The UK EPSRC Supergen ORE Hub EP/S000747/1 & EP/Y016297/1, RHJW's EPSRC Fellowship EP/R007322/1 & the EPSRC CoTide programme EP/X03903X/1.

















### Benchmarking Project: Overview and Objectives

Unsteady loading and the inability to confidently predict unsteady loading and to quantify errors drives unnecessary redundancy and design conservatism.

#### Objectives:

- i. improve accuracy of modelling techniques,
- ii. improve confidence in the use of modelling techniques,
- iii. quantify modelling errors for different techniques under different loading scenarios,
- iv. development of novel measurement techniques.

#### Approach:

- conduct a large laboratory test of a highly instrumented tidal turbine in waves and turbulent currents to provide underlying data,
- ii. conduct a series of community wide (academia and industry) blind prediction exercises with staged data release, leading to open access datasets.













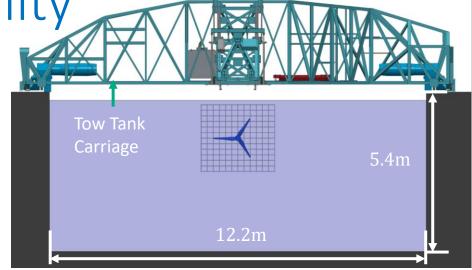




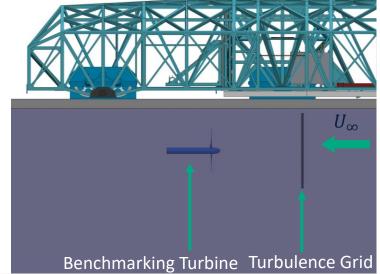


Requirements, Tests & Facility

#### **Test requirements:**


- Require low blockage experiments with a large diameter rotor for in-blade sensing and Reynolds independence,
- Flume options blockage too high,
- Tow tank low blockage but turbulence low,
- Solution: tow tank with an upstream turbulence grid

#### **Test conditions:**


- Stage 1: Uniform flow
   Uniform flow + Grid generated turbulence
- Stage 2a: Uniform flow + Head Waves
   Yawed uniform flow
- Stage 2b: Uniform flow + Following Waves

#### QinetiQ towing tank facility, Haslar, Portsmouth UK

- 270m (L) x 12.2m (W) x 5.4m (D)
- Tow speed 1m/s
- Tow length approx. 150m, settling time ~15mins.













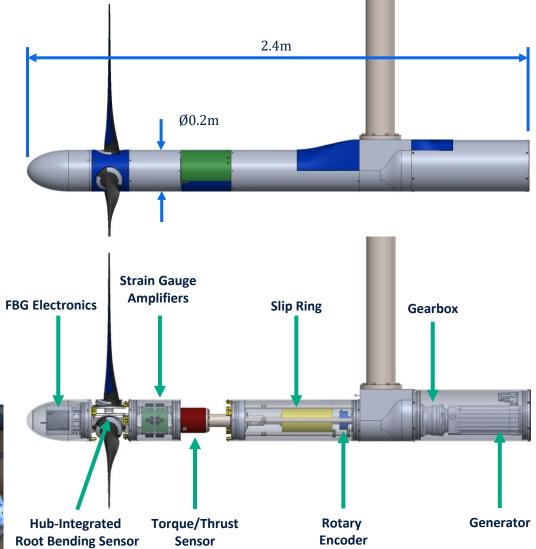













### Instrumented Turbine

- 1.6m diameter rotor / 0.2m diameter nacelle
- Two blades instrumented with strain gauges at six radial locations for flapwise and edgewise bending moments
- Remaining blade instrumented with fibre Bragg sensors
- Individual root blade moments measured with hub – integrated root bending sensors
- Torque and Thrust measured by shaft mounted transducer upstream of front bearing





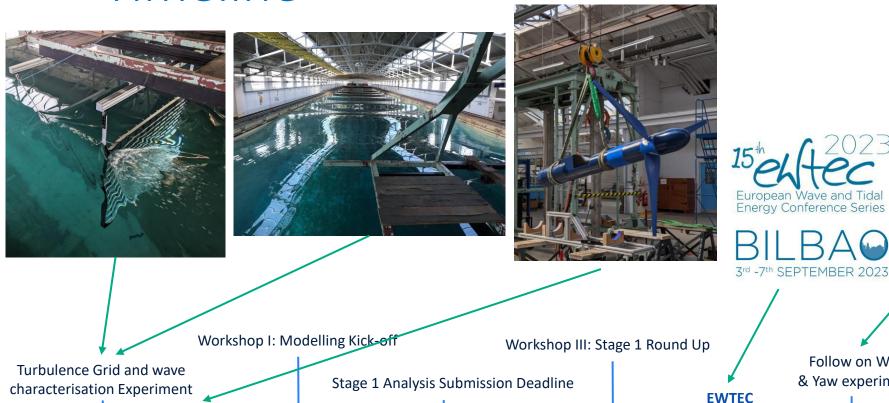




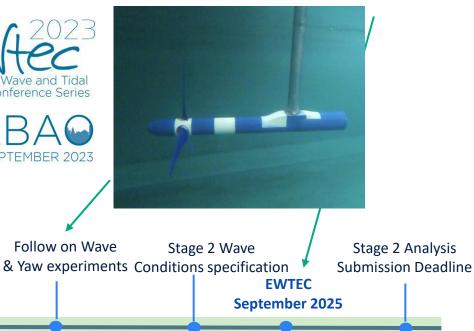













### Timeline









June 2022

**April 2022** 

Workshop II: Stage 1
Data Presentation

2<sup>nd</sup> November 2022

Workshop IV: Stage 1 – prediction review. Stage 2 – Release of first set of Wave Conditions

**March 2025** 

Workshop V: Stage 2
Data Discussion



**July 2021** 





5<sup>th</sup> September 2022



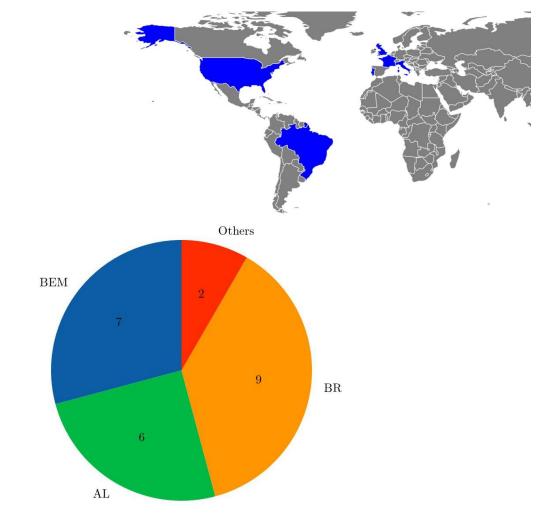
17th January 2023



September 2023






15th April 2025



16<sup>th</sup> January 2026

### Stage 1: Benchmarking Participants

- 12 collaborating research groups:
  - from across academia and industry
  - from 6 countries; UK, France, Italy, Portugal Brazil & USA.
- 26 submissions from a wide range of methods falling into 5 categories:
  - Blade Element Momentum (BEM)
  - Blade Resolved CFD (BR)
  - Actuator Line CFD (AL)
  - Boundary Integral Equation Model (BIEM)
  - Vortex methods



















### Benchmarking cases

|                             | Low Turbulence (LT) Cases |      |      |      |      |      |      |      |      |      |      |      |      |
|-----------------------------|---------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Case No.                    | I                         | II   | III  | IV   | V    | VI   | VII  | VIII | IX   | X    | XI   | XII  | XIII |
| $\mathbf{U}_{\infty}$ [m/s] | 1.0                       | 1.0  | 1.0  | 1.0  | 1.0  | 1.0  | 1.0  | 1.0  | 1.0  | 1.0  | 1.0  | 1.0  | 1.0  |
| λ                           | 4.02                      | 4.52 | 5.03 | 5.36 | 5.53 | 5.78 | 6.03 | 6.53 | 6.70 | 7.04 | 7.20 | 7.54 | 7.87 |

|                             | Elevated Turbulence (ET) Cases |        |        |        |        |        |        |        |        |        |        |  |
|-----------------------------|--------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|
| Case No.                    | I                              | II     | III    | IV     | V      | VI     | VII    | VIII   | IX     | X      | XI     |  |
| $\mathbf{U}_{\infty}$ [m/s] | 0.9207                         | 0.9207 | 0.9207 | 0.9207 | 0.9207 | 0.9207 | 0.9207 | 0.9207 | 0.9207 | 0.9207 | 0.9207 |  |
| λ                           | 3.91                           | 4.46   | 4.91   | 5.37   | 5.64   | 5.82   | 6.19   | 6.37   | 6.92   | 7.37   | 7.73   |  |

- Participants asked to concentrate on priority (yellow) cases.
- LT cases submitted by 24 participants, ET cases submitted by 18 participants.

















## Participants: Blade Resolved

| Submission      | Solver       | Turbulence<br>Model   | State      | Wall<br>Treatment | Mesh Size | Flow<br>Domain | Free<br>Surface |  |
|-----------------|--------------|-----------------------|------------|-------------------|-----------|----------------|-----------------|--|
| blueOASIS-      | ReFRESCO     | k-ω SST               | Steady     | Resolving         | 34.3M     | MRF *          | None            |  |
| BR-RANS         | 2.8.0        |                       |            |                   |           | WR §           |                 |  |
| CHE-BR-         | STAR-CCM+    | k-ω SST               | Unsteady   | Resolving         | 3.5M      | TTG†           | VOF ‡           |  |
| uRANS           | STAR-CCM+    | κ-ω 331               | Unsteady   | Resolving         | 5.5WI     | 110            | VOF #           |  |
| CNR-INM-        | X NAVIS      | SA                    | Unsteady   | Resolving         | 24M       | MRF WR         | None            |  |
| <b>BR-uRANS</b> | (in-house)   | SA                    | Unsteady   | Resolving         | 24IVI     | WIKF WK        | None            |  |
| LOMC-BR-        | OmenEOAM     | 1 COT                 | Ctoody     | Dagalyina         | 26M       | MDE            | None            |  |
| RANS            | OpenFOAM     | $k - \omega$ SST      | Steady     | Resolving         | 26M       | MRF            | 140110          |  |
| NREL-BR-        | STAR-CCM+    | $k - \omega$ SST      | Stoody     | Function          | 4.23M     | MRF            | None            |  |
| RANS            | STAR-CCM+    | $\kappa - \omega$ 331 | Steady     | runction          | 4.25111   | WIKF           | None            |  |
| NREL-BR-        | STAR-CCM+    | $k - \omega$ SST      | Unsteady   | Function          | 21.15M    | TTG            | VOF             |  |
| uRANS           | STAR-CCM+    | $\kappa - \omega$ 331 | Offsteady  | runction          | 21.1511   | 110            | VOI             |  |
| UoE-BR-         | OpenFOAM     | $k - \omega$ SST      | Steady     | Resolving         | 18.8M     | MRF            | None            |  |
| RANS            | OpenFOAM     | $\kappa - \omega$ 331 | Steady     | Resolving         | 10.01/1   | WIKF           | None            |  |
| UoO-BR-         | On an EOAD # | 1 CCT                 | Ct a a day | Danaladas         | 2014      | MDE            | Nama            |  |
| RANS            | OpenFOAM     | $k - \omega$ SST      | Steady     | Resolving         | 38M       | MRF            | None            |  |
| USP-BR-DES      | OpenFOAM     | DES SST               | Unsteady   | Function          | 33.6M     | TTG            | None            |  |

<sup>\*</sup> MRF = multiple reference frame technique with by default a  $120^{\circ}$  cylindrical wedge domain of a single blade, or if specified the § WR = whole rotor geometry. † TTG = tow-tank geometry with rotating turbine submerged at experimental depth. ‡ VOF = Volume-of-Fluid free surface representation.

















### Participants: Actuator Line

| Submission | Solver     | Turbulence<br>Model | Mesh Size | 2D<br>Polars | Polar<br>Interpolation | Free<br>Surface<br>Rep. | Nacelle<br>Model | Tip-loss<br>Model |  |
|------------|------------|---------------------|-----------|--------------|------------------------|-------------------------|------------------|-------------------|--|
| QUB-AL-    | 0 5047     | LES                 | 16004     | Provided     | 0: 1 1                 | MOE 8                   | N.T.             | G) f :            |  |
| LES        | OpenFOAM   | Smagorinsky         | 16.3M     | *            | Single polar           | VOF §                   | None             | SM ‡              |  |
| UoM-AL-    | STREAM     | 1 CCT               | 0.0414    | D            | 0:11-                  | NIDEC 6                 | ID ±             | NI                |  |
| uRANS      | (in-house) | k-ω SST             | 0.94M     | Provided     | Single polar           | NDFS §                  | IB†              | None              |  |
| UoM-AL-    | DOFAS      | I EO WALE           | 2014      | Duari da d   | Cinala mala :          | NIDEC                   | TD               | CM                |  |
| LES        | (in-house) | LES WALE            | 30M       | Provided     | Single polar           | NDFS                    | IB               | SM                |  |
| UoO-AL-    | OmanEOAM   | L COT               | C 0114    | Duarridad    | Tu                     | NDEC                    | D 1 1            | G) 4              |  |
| NRSM       | OpenFOAM   | k-ω SST             | 6.91M     | Provided     | Interpolation          | NDFS                    | Resolved         | SM                |  |
| UoO-AL-    | OnenEOAM   | l CCT               | 6 01M     | Dwaridad     | Tu                     | NDEC                    | Dagalyad         | 337N#             |  |
| NRWM       | OpenFOAM   | k-ω SST             | 6.91M     | Provided     | Interpolated           | NDFS                    | Resolved         | WM                |  |
| UoO-AL-    | On an EOAM | L COT               | 10.007    |              | Tu                     | NDEC                    | TD.              | WD 6 !            |  |
| IBWM       | OpenFOAM   | $k$ - $\omega$ SST  | 10.80M    | Provided     | Interpolated           | NDFS                    | IB               | WM ‡              |  |

<sup>\*2</sup>D performance polars provided as part of the benchmarking exercise (from 2D RANS). § VOF = Volume of Fluid deform-able free surface, NDFS = Non-Deformable Free Surface. † IB = Immersed Boundary method. ‡ SM & WM = Shen et al.- and Wimshurst & Willden-type tip-loss models.

















# Participants: Blade Element Momentum

| Submission          | 2D Polars                             | Polar<br>Interpolation | Turbulent<br>Inflow | Induction/Wake<br>Correction  | Root Model | Tip-loss<br>Correction |  |
|---------------------|---------------------------------------|------------------------|---------------------|-------------------------------|------------|------------------------|--|
| LOMC-BEM            | 2D RANS                               | Re-Tu<br>Interpolation | None                | Modified Turbulent Wake Model | None       | PDL†                   |  |
| NREL-BEM            | Provided * with  Rotation  Correction | Single polar           | None                | Buhl Model                    | PDL        | PDL                    |  |
| SU-BEM              | Provided                              | Single polar           | Sandia<br>Method    | High-induction<br>Model       | PDL        | PDL                    |  |
| UoE-BEM             | XFOIL                                 | Re Interpolation       | Spectral<br>Method  | Buhl Model                    | GLT ‡      | GLT                    |  |
| UFU-BEM-<br>Aerodas | Provided with  Aerodas  Correction    | Single polar           | None                | None                          | PDL        | PDL                    |  |
| UFU-BEM-<br>SD      | Provided with Stall Delay Correction  | Single polar           | None                | None                          | PDL        | PDL                    |  |
| UoM-BEM-1           | Provided                              | Single polar           | None                | GLT                           | None       | GLT                    |  |
| UoM-BEM-2           | Provided Single polar                 |                        | Import from LES     | GLT                           | GLT        | GLT                    |  |

<sup>\* 2</sup>D performance polars provided as part of the benchmarking exercise (from 2D RANS). † PDL = Prandtl-type hub / tip correction.

















<sup>‡</sup> GLT = Glauert-type induction / hub / tip correction.

### Other Participants:

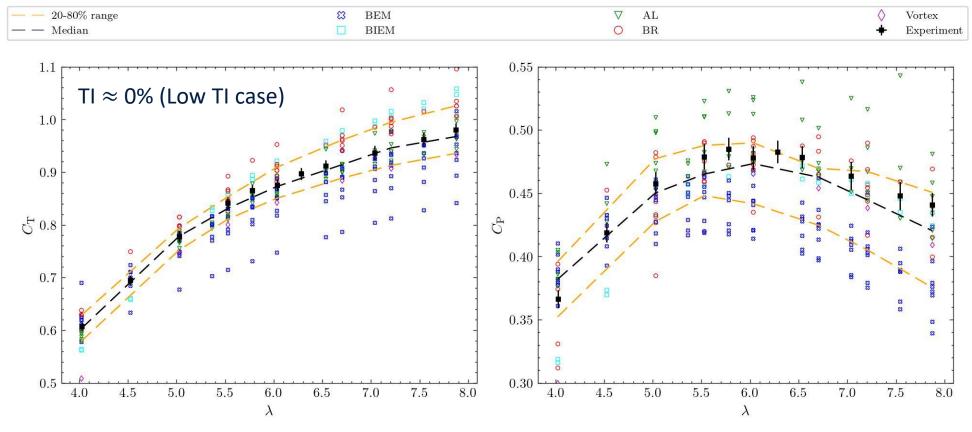
| Submission             | Method Type | Description                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                        |             | Boundary Integral Equation Model. Uses a Viscous Flow Correction model to                                                                                                                                                                                                                                                                                                                               |  |  |  |
| CND INM DIEM D12 / D22 | DIEM        | estimate the effects of viscosity on blade loads with input 2D flow lift and drag                                                                                                                                                                                                                                                                                                                       |  |  |  |
| CNR-INM-BIEM-D12 / D22 | BIEM        | Boundary Integral Equation Model. Uses a Viscous Flow Correction model to estimate the effects of viscosity on blade loads with input 2D flow lift and drag curves calculated using XFOIL. D12 / D22 refers to alternative shape parameters used in modelling the curvature of the wake surface in the tip vortex region.  3D unsteady Lagrangian Vortex Particle Method. Blades represented by lifting |  |  |  |
|                        |             | used in modelling the curvature of the wake surface in the tip vortex region.                                                                                                                                                                                                                                                                                                                           |  |  |  |
| I OMC Venter           | DD.         | 3D unsteady Lagrangian Vortex Particle Method. Blades represented by lifting                                                                                                                                                                                                                                                                                                                            |  |  |  |
| LOMC-Vortex            | BR          | line model using tabulated 2D lift and drag coefficients.                                                                                                                                                                                                                                                                                                                                               |  |  |  |


















### Blind prediction results



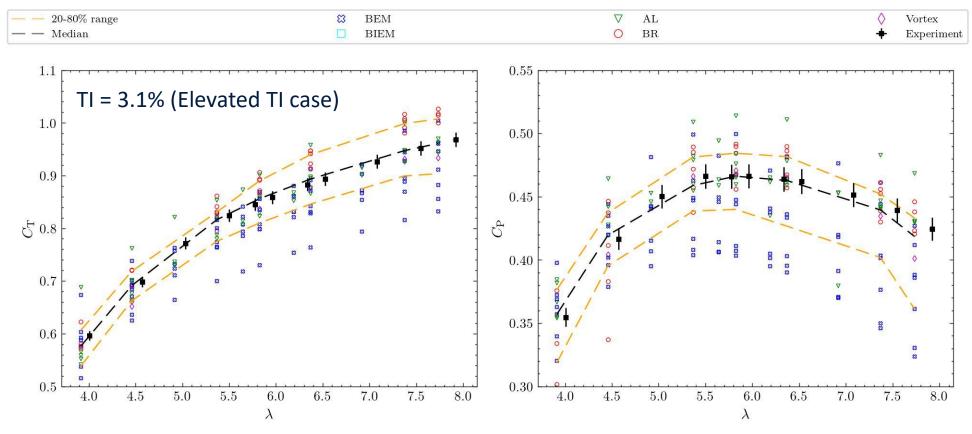
- Power and thrust coefficients are generally well predicted. 20-80% prediction interval particularly good,
- 20-80% Thrust predictions are more tightly banded ( $\pm 5\%$ ) than Power ( $+7\% \rightarrow -11\%$ ),
- AL, BEM, BR, BIEM, Vortex, exhibit different biases, with results spread often linked to choice of sub-models.


















### Blind prediction results



- BR tendency to underpredict  $C_P$  and overpredict  $C_T$ .
- BEM methods tend to underpredict both.
- BIEM over-predicts  $C_T$  but  $C_P$  good at high TSR.

- Vortex method consistently under-predicts LT cases, but more accurate for ET cases.
- AL methods good alignment in both  $C_P$  and  $C_T$ .















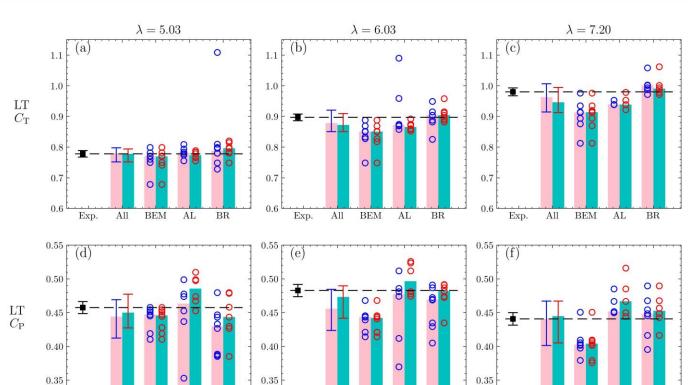


### Reduction in Prediction Uncertainty

Definition of data submission levels

- Level 1 (L1) completely blind submission
- Level 2 (L2) "user-error corrected" submissions correction for data input, setup errors etc
- Level 3 (L3) New results that use improved modelling techniques / approaches building on data comparisons from this and other exercises.


Improvements from **L1** to **L2** result from having a reliable dataset against which to verify model setup.


**Table:** Standard deviations of L1 and L2 solutions.

|    | Low Turbulence (LT) Cases |         |      |       |       |      |      |      |  |  |  |
|----|---------------------------|---------|------|-------|-------|------|------|------|--|--|--|
|    |                           | $C_{1}$ | Γ    | $C_P$ |       |      |      |      |  |  |  |
|    | All                       | BEM     | AL   | BR    | All   | BEM  | AL   | BR   |  |  |  |
| L1 | 11.8                      | 6.02    | 17.1 | 17.3  | 15.49 | 5.15 | 10.5 | 15.6 |  |  |  |
| L2 | 5.45                      | 5.86    | 2.58 | 4.80  | 6.93  | 4.96 | 1.64 | 3.88 |  |  |  |

|    | Elevated Turbulence (ET) Cases |      |      |      |      |      |      |      |  |  |
|----|--------------------------------|------|------|------|------|------|------|------|--|--|
|    | $C_T$ $C_P$                    |      |      |      |      |      |      |      |  |  |
|    | All                            | BEM  | AL   | BR   | All  | BEM  | AL   | BR   |  |  |
| L1 | 14.7                           | 7.71 | 2.26 | 22.8 | 16.5 | 6.55 | 1.54 | 22.3 |  |  |
| L2 | 6.22                           | 7.44 | 5.04 | 3.03 | 7.87 | 6.15 | 4.33 | 2.56 |  |  |

**Figure:** Medians and ranges of  $C_T$  and  $C_P$  for fully blind (L1) and user-error-corrected (L2) submissions, TI ~ 0% (LT case)

















Exp.



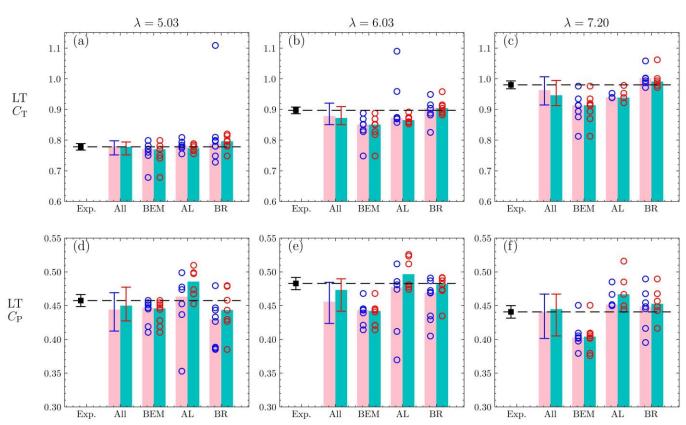


### Reduction in Prediction Uncertainty

This has already **provided quantifiable improved confidence in simulation model application**.

Standard deviations of solutions reduced by over 50% from c. 15% at L1 to 7% at L2 for All cases (methods, TSRs, TIs,  $C_T$  and  $C_P$ ).

Further improvements to accuracy (**L3**) being sought by modellers through improvements and refinements to modelling techniques using benchmarking data as reference data set.


**Table:** Standard deviations of L1 and L2 solutions.

|           | Low Turbulence (LT) Cases |         |      |      |       |      |      |      |  |  |  |
|-----------|---------------------------|---------|------|------|-------|------|------|------|--|--|--|
|           |                           | $C_{2}$ | Γ    |      | $C_P$ |      |      |      |  |  |  |
|           | All                       | BEM     | AL   | BR   | All   | BEM  | AL   | BR   |  |  |  |
| L1        | 11.8                      | 6.02    | 17.1 | 17.3 | 15.49 | 5.15 | 10.5 | 15.6 |  |  |  |
| <b>L2</b> | 5.45                      | 5.86    | 2.58 | 4.80 | 6.93  | 4.96 | 1.64 | 3.88 |  |  |  |

|    | Elevated Turbulence (ET) Cases |      |      |      |      |      |      |      |  |  |
|----|--------------------------------|------|------|------|------|------|------|------|--|--|
|    | $C_T$ $C_P$                    |      |      |      |      |      |      |      |  |  |
|    | All                            | BEM  | AL   | BR   | All  | BEM  | AL   | BR   |  |  |
| L1 | 14.7                           | 7.71 | 2.26 | 22.8 | 16.5 | 6.55 | 1.54 | 22.3 |  |  |
| L2 | 6.22                           | 7.44 | 5.04 | 3.03 | 7.87 | 6.15 | 4.33 | 2.56 |  |  |

**Figure:** Medians and ranges of  $C_T$  and  $C_P$  for fully blind (L1) and user-error-corrected (L2) submissions, TI ~ 0% (LT case)















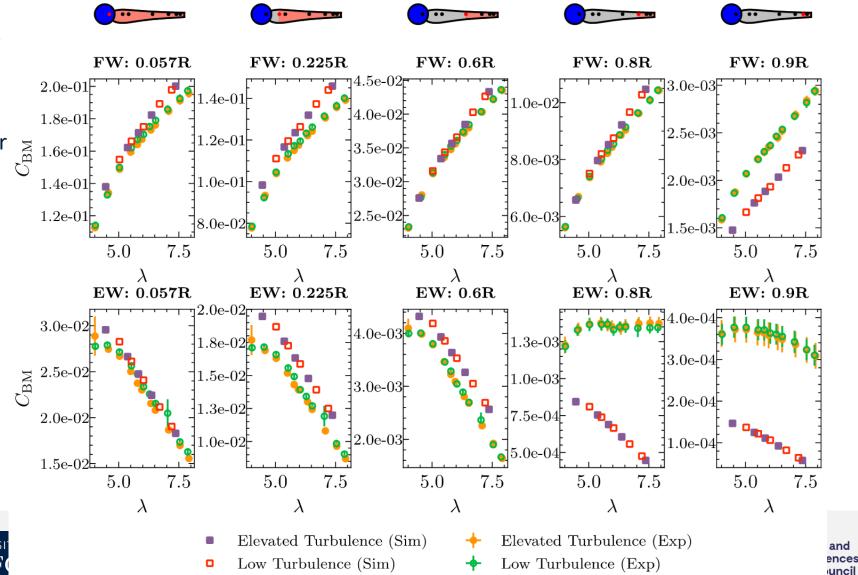






### Bending Moments – Experiments & CFD

- Experimental data for spanwise distributed Flapwise (FW) and Edgewise (EW) BMs enables


  assessment of model

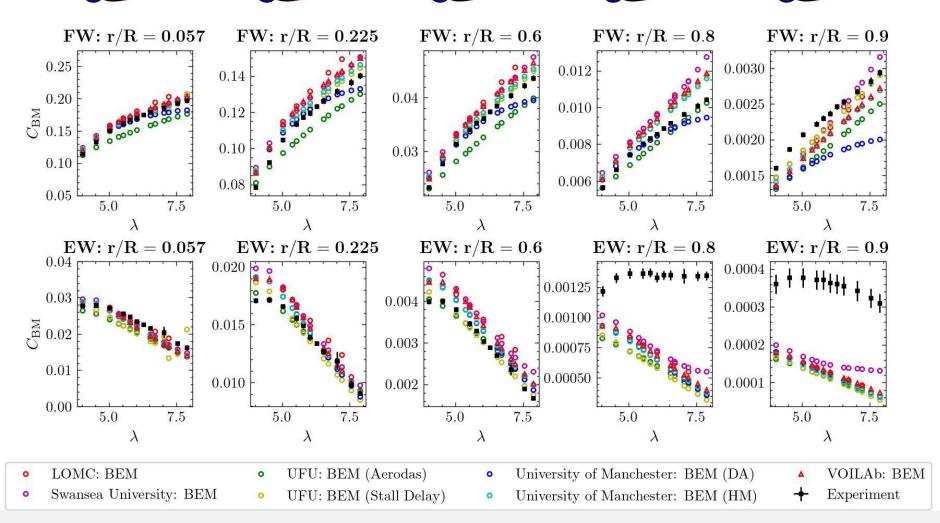
  performance at a more granular level.

  1.6e-01
- FW and EW bending moment coefficients

$$C_{BM} = M_{BM} \frac{16}{\rho \pi D^3 U_{\infty}^2}$$

- Minor changes between Low and Elevated TI levels,
- CFD simulations over-predict EW in mid-span locations & under-predict FW & EW at tip,
- CFD Root BM well predicted.










### Bending Moments – BEM & BIEM

- BEM models tend to under-predict inboard bending moments, overpredict through midspan up to 0.8R (FW) and 0.6R (EW), and then underpredict further outboard.
- Divergence in model predictions outboard due to choice of tip correction & high thrust turbulent wake model.
- Over/under predictions lead to net underprediction in  $C_T \& C_P$ .



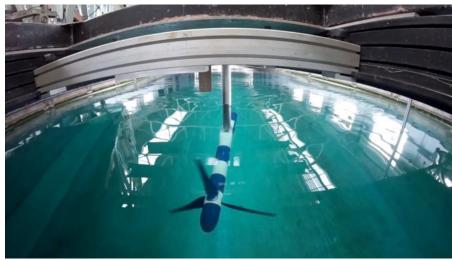




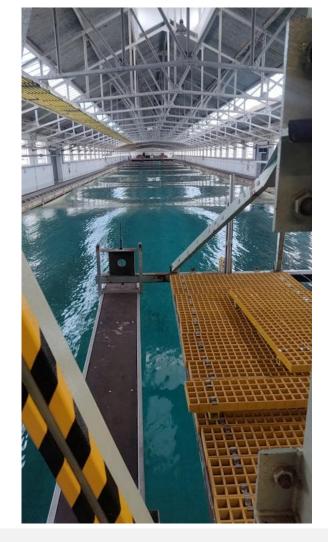











### Stage 2: Experiments in waves

- Turbine tested at QinetiQ, March 3rd-21st & 6-24<sup>th</sup> October 2025
- Wave characterization using 3 different techniques – 7 solid gauges, 6 ultrasonic probes and a rake of "barnacle" 5-hole probes
- Wave experiments covering >50
   wave conditions
- Additional steady flow experiments with yawed turbine
- Total of > 400 tests performed















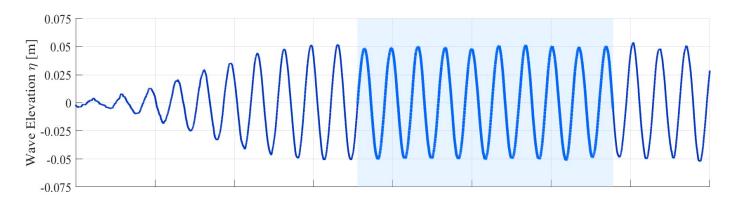


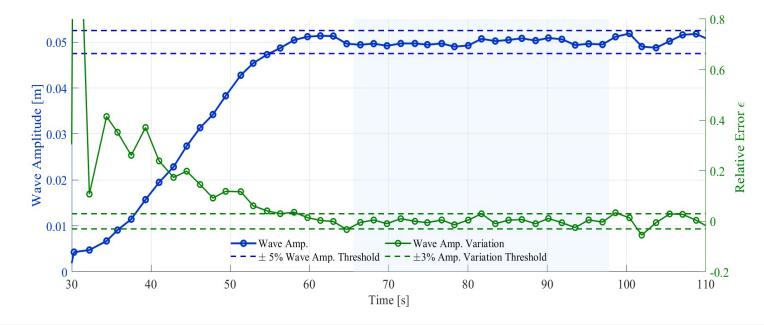






### Selection of Wave Conditions


#### Wave stability criteria:


- <5% variation from the set amplitude
- <3% cycle to cycle amplitude fluctuation

#### Torque stability criteria:

<7% cycle to cycle torque fluctuation</li>

Selected cycles are combined with those from repeated tests conducted under similar conditions.













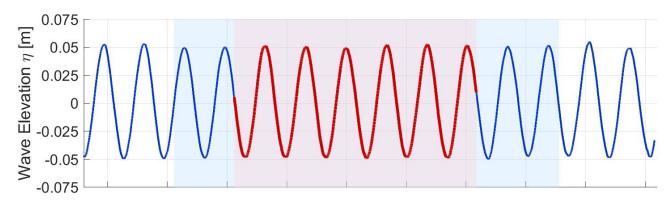


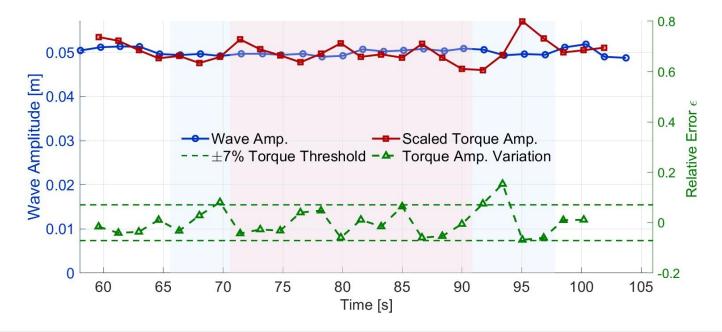






### Selection of Wave Conditions


#### Wave stability criteria:


- <5% variation from the set amplitude
- <3% cycle to cycle amplitude fluctuation

#### Torque stability criteria:

<7% cycle to cycle torque fluctuation

Selected cycles are combined with those from repeated tests conducted under similar conditions.





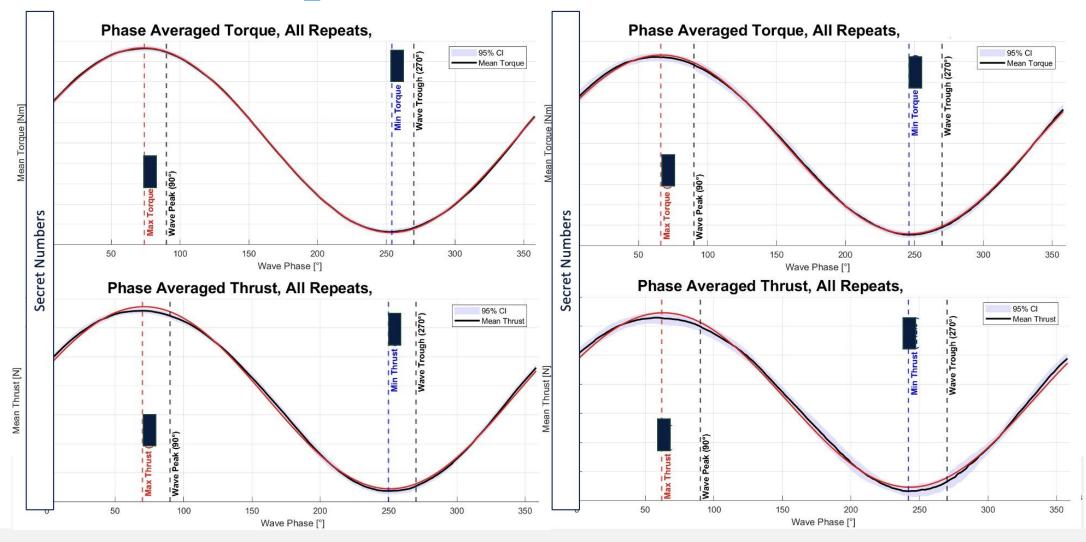



















### Phase-averaged results

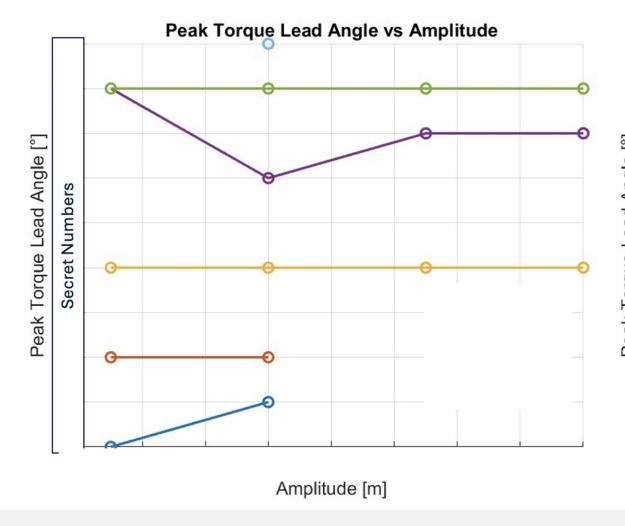


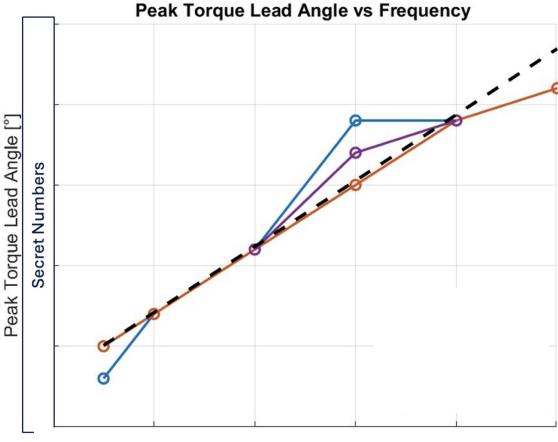















### Torque phase lag





Wave Set Frequency [Hz]



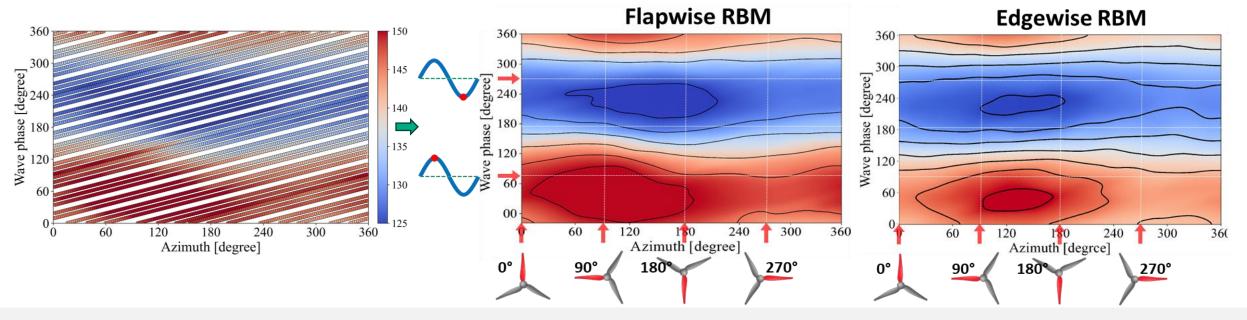

















### Unsteady loading in waves

- RBMs from all 3 blades selected over stable wave cycles across all repeated tests,
- RBM data visualized in both wave phase and blade phase (azimuthal) coordinates,
- Flapwise and edgewise load maxima / minima do not occur in phase with wave crest / trough and blade top / bottom dead centre positions,
- **Hypothesis**: wave-induced perturbations correlated loads well along blade spans when blades near horizontal, but decorrelate loads when blades vertical due to depth decay.





















### Unsteady loading in waves

- RBM and bending moments along span are analyzed to quantify unsteady blade loading
- Wave-induced unsteady load amplitudes can reach up to 30% of the steady-state blade load (at H/D=0.0625)







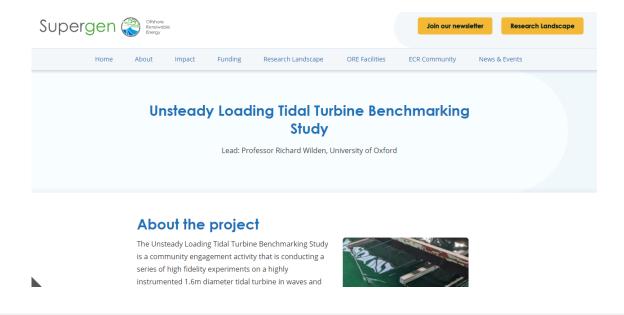













### How to Participate?

For further details on the Tidal Turbine Benchmarking Project, including benchmark data and how to take part:

https://supergen-ore.net/projects/tidal-turbine-benchmarking Email Richard Willden Richard.Willden@eng.ox.ac.uk or Xiaosheng Chen xiaosheng.chen@eng.ox.ac.uk

- 1. Download **geometry data and test conditions** from the repository links on the Supergen website.
- 2. Perform blind predictions.
- 3. Download example data **submission file** and submission data formatting guide from the repository links on the Supergen website.
- 4. Upload data in specified format to us.



















### Data Depository & Test Conditions

#### Turbine geometry:

- 3D CAD geometry of nacelle and tower
- 2D hydrofoil sections / chord and twist distributions
- 2D hydrofoil CFD data and link to experimental data
- 3D CAD geometry of blade
- Turbulence grid geometry:
  - 3D CAD data
- Test conditions:
  - TSR range / flow velocities
  - Measured wave heights and frequencies



















### Benchmarking Test Cases

- The table below illustrates all the wave conditions tested during the March 2025 campaign, all cases are tested under a tow-speed of  $1.0 \ m/s$  and a rotation RPM of  $72.0 \ (TSR \approx 6.03)$
- Depending on the modelling methodology simulation of more or less cases may be possible
- The **blue** cases are the cases with best quality data, and those with the "**Priority**" tag are the ones **requested to be attempted by all simulation methodologies**. Other cases are optional and welcomed.
- 7 solid wave gauges and 6 ultrasonic probes mounted on the carriage to measure wave elevation. U1 signals are used as the reference wave elevation.
   Wave Test Matrix

  Wave Gauge Locations

**Wave Gauge Locations** Wave Paddle Frequency [Hz] •G5 4 • G4 0.225 0.25 0.3 0.35 0.45 0.5 0.4 • G3 U5 0.025 Priority • G2 y (m) Wave 0.035 Ú3 **Turbine Amplit** 0.05 **Priority Priority Priority** Priority Priority ude [m] -2U40.075 -3× Ultrasonic Probe Wave Gauge 0.1 Priority Priority **Green: More limited data available** Blue: Best quality data x(m)





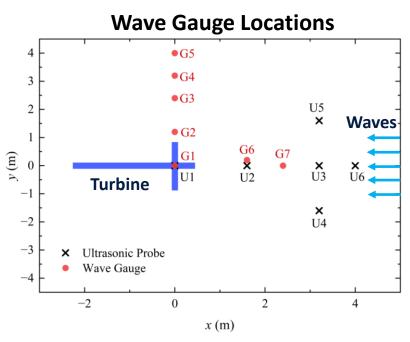




Priority: overlap cases from both 2022 and 2025 campaigns - previously specified for benchmarking










### Benchmarking Test Cases

- The previously mentioned wave case frequencies are the wave paddle frequencies.
- A table is provided below to translate between the wave paddle frequency and the rotor encounter wave frequency using the wave dispersion equation.

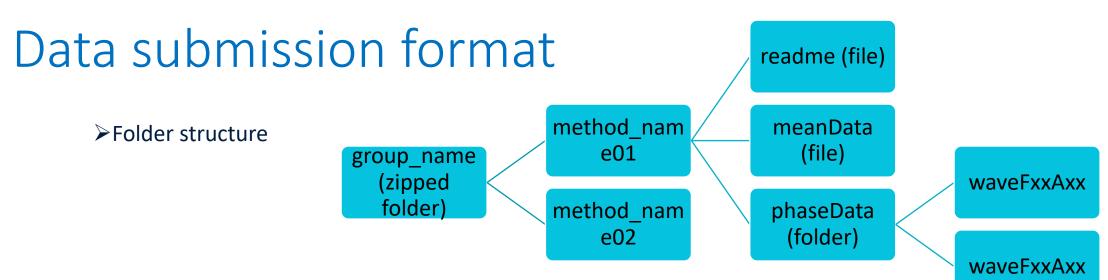
| Wave Paddle Frequency f_0 [Hz]           | 0.225  | 0.250  | 0.300  | 0.350  | 0.400 | 0.450 | 0.500 |
|------------------------------------------|--------|--------|--------|--------|-------|-------|-------|
| Wave Number k                            | 0.238  | 0.278  | 0.375  | 0.498  | 0.646 | 0.816 | 1.007 |
| Wave Celerity c_0 [m/s]                  | 5.945  | 5.649  | 5.023  | 4.415  | 3.892 | 3.465 | 3.119 |
| Wave Encounter Velocity c_0 + Uinf [m/s] | 6.945  | 6.649  | 6.023  | 5.415  | 4.892 | 4.465 | 4.119 |
| Wave Encounter Frequency f_en [Hz]       | 0.263  | 0.294  | 0.360  | 0.429  | 0.503 | 0.580 | 0.660 |
| Wavelength L [m]                         | 26.424 | 22.595 | 16.743 | 12.615 | 9.730 | 7.700 | 6.239 |
| h/L                                      | 1.284  | 1.502  | 2.027  | 2.689  | 3.487 | 4.406 | 5.439 |






















Please be noted that the numbers in the waveFxxAxx filename needs to be exactly 3 decimal places.

|                          |       |                      | 1                    | Wave Paddle F        | requency [Hz |                      |       |                      |
|--------------------------|-------|----------------------|----------------------|----------------------|--------------|----------------------|-------|----------------------|
| Wave<br>Amplitude<br>[m] |       | 0.225                | 0.250                | 0.300                | 0.350        | 0.400                | 0.450 | 0.500                |
|                          | 0.025 |                      |                      | waveF0.300A<br>0.025 |              |                      |       |                      |
|                          | 0.035 |                      |                      |                      |              |                      |       |                      |
|                          | 0.050 | waveF0.225A<br>0.050 | waveF0.250A<br>0.050 | waveF0.300A<br>0.050 |              | waveF0.400A<br>0.050 |       | waveF0.500A<br>0.050 |
|                          | 0.075 |                      |                      |                      |              |                      |       |                      |
|                          | 0.100 |                      |                      | waveF0.300A<br>0.100 |              | waveF0.400A<br>0.100 |       |                      |

















### Data submission format

- Format of the **readme** file: include necessary detail of the simulation methodology, sub-models, assumptions, conditions, domain size etc.
- > Format of the meanData file:
  - Include time-averaged rotor integrated quantities from all simulated wave cases.
  - File format: **tab-delimited ASCII file**, with header line of parameter names start with "#", and each column separated by a tab, numbers should be rounded to **6 decimal places**.
  - Oct: thrust coefficient, Cp: power coefficient, RBM: root bending moment, FW: flapwise, EW: edgewise
  - o mean: time-averaged data, SE: standard error  $\sigma_{\overline{C_T}} \approx \frac{\sigma_{C_T}}{\sqrt{n}}$ , STD: standard deviation

| #wave<br>Amplit<br>ude<br>[m] | waveFr<br>equenc<br>y [Hz] | Ct<br>(mean) | Ct (SE) | Ct<br>(STD) | Cp<br>(mean) | Cp (SE) | Cp<br>(STD) | RBM_FW<br>(mean)<br>[Nm] | RBM_FW<br>(SE) [Nm] | RBM_FW<br>(STD)<br>[Nm] | RBM_EW<br>(mean)<br>[Nm] | RBM_EW<br>(SE) [Nm] | RBM_EW<br>(STD)<br>[Nm] |
|-------------------------------|----------------------------|--------------|---------|-------------|--------------|---------|-------------|--------------------------|---------------------|-------------------------|--------------------------|---------------------|-------------------------|
| 0.0250                        | 0.2250                     | xxx          | xxx     | xxx         | xxx          | XXX     | xxx         | xxx                      | xxx                 | xxx                     | xxx                      | xxx                 | xxx                     |
| 0.0250<br>00                  | 0.2500<br>00               | xxx          | xxx     | xxx         | xxx          | XXX     | xxx         | xxx                      | xxx                 | xxx                     | xxx                      | xxx                 | xxx                     |
| etc.                          |                            |              |         |             |              |         |             |                          |                     |                         |                          |                     |                         |

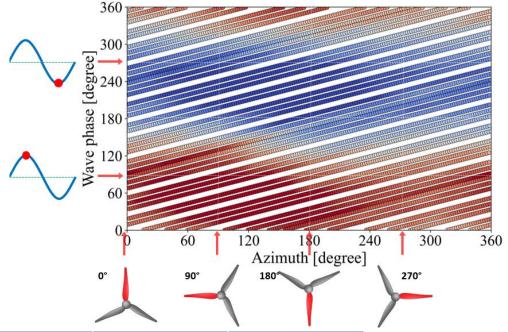

















### Data submission format

- Format of the **phaseData** file
  - o Include time- and phase-history data (Ct, Cp, RBMs) of a single blade for each extracted/sampled timestep with calculated wave and rotational phase angles (examples on the right).
  - Note: history of all 3 blades can be included with a shifted rotational phase to increase the data size.
  - File format: tab-delimited ASCII file, with header line of parameter names start with "#", and each column separated by a tab, numbers should be rounded to up to 6 decimal places.
  - Arranged as below:



| #physicalTime [s] | wavePhase [deg] | bladePhase<br>[deg] | Ct  | Ср  | RBM_FW<br>[Nm] | RBM_EW<br>[Nm] |
|-------------------|-----------------|---------------------|-----|-----|----------------|----------------|
| 0.000001          | 0.00000         | xxx                 | xxx | xxx | xxx            | xxx            |
| 0.000002          | 3.00000         | xxx                 | xxx | xxx | xxx            | xxx            |
| etc.              |                 |                     |     |     |                |                |

















### Advice for Modellers

- The exercise is not a competition but aims to improve the understanding of the relative strengths and weaknesses and limitations of the different modelling approaches,
- Experiments are also **imperfect** so we do not expect any simulation data to perfectly match the measurements.



### Benchmarking Timeline

- Register your participation in the Stage II: Unsteady Loading in Waves benchmarking exercise by email to Xiaosheng Chen xiaosheng.chen@eng.ox.ac.uk
- 31<sup>st</sup> October 2025 Webinar with registered participants to clarify case set up and data submission requirements.
- Nov / Dec 2025 (TBC) optional progress Webinar
- Submit your blind prediction loading solutions by 16<sup>th</sup> January 2026.

















### Participation & benchmarking data

For further details on the Tidal Turbine Benchmarking Project, including benchmark data and how to take part:

https://supergen-ore.net/projects/tidal-turbine-benchmarking Email Richard Willden <u>Richard.Willden@eng.ox.ac.uk</u> or Xiaosheng Chen <u>xiaosheng.chen@eng.ox.ac.uk</u>



#### Stage I – Uniform Flow benchmarking data

Data repository currently being uploaded to the website (in the "Released Data Log")

Experimental data: Tucker Harvey et al. "Tidal Turbine Benchmarking Project: Stage I – Steady Flow Experiments" Blind predictions: Willden et al. "Tidal Turbine Benchmarking Project: Stage I – Steady Flow Blind Predictions" Full comparisons in companion Journal Articles in submission to Journal of Fluids & Structures

#### Stage II – Unsteady Loading benchmarking data

Data to be made available following final submissions to the blind prediction exercise on 16<sup>th</sup> January 2026 Wave loading data analysis ... in preparation

Yawed loading data analysis ... in preparation















