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Introduction 

Offshore wind turbine lifespan is dependent on the fatigue of parts and structural 
components including the monopile due to repeated cyclic loading from wind and waves. 
Fatigue failure predictions are fundamental during design of wind farms, although rapid 
assessment of cumulative fatigue throughout the lifespan is limited. Advancements in the 
temporal accuracy and speed in estimating monopile fatigue aid tactical operation and 
maintenance decision, and can support life extension assessments [1].


Monopile fatigue can be evaluated through aero-hydro-servo-elastic numerical modelling 
simulations encompassing many variables, with the environmental hydro-dynamic and 
meteorological conditions being principle variables. Due to the complex nature of real-
world conditions, numerical modelling can require a degree of simplification. For example, 
higher-order wave kinematics are noted within industry standards [2] due to resonance 
effects, yet are commonly omitted in the majority of academic research. This can result in 
an underestimation of structural loading and fatigue [3, 4], notably when the turbine is 
parked [3], although when operational the aerodynamic loading is of greater importance. 
Furthermore, in-situ environmental measurements are commonly ‘lumped’ to reduce the 
number of representative loading cases (wind-wave scenarios) thus minimising the 
computational demand [5, 6, 7, 8]. Lumped data and corresponding probabilities need to 
maintain representation of the equivalent damage load associated with the full dataset as 
best as possible. Data lumping provides a reasonable approach to reducing computation 
time while obtaining an reasonable indication of fatigue, yet the simplifications produce a 
degree of error [8], and omit wave frequencies close to the structures eigenfrequencies 
that are critical for resonance effects. 


Meta-models and statistical regression have been employed to reduce simulation 
demands while maintaining accuracy [9,10,11]. The simplification of environmental 
conditions proves successful in determining bulk fatigue loads, yet offer limited benefit 
when evaluating short time-frame and continuous temporal fatigue information. Recently, 
structural monitoring of turbines has implemented machine learning (see review by Stetco 
et al. [12]), including the use of artificial neural networks to evaluate offshore wind turbine 
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foundation damage using data-driven approaches [13]. While data-driven approaches are 
advantageous, turbine specific accelerometer data is not always available. 


This project set out to develop a novel approach that integrates physics-based modelling 
and machine learning to predict monopile damage based on basic met-ocean data. 


Project Aims and Objectives 

The aim of this project was to quickly and accurately forecast offshore wind turbine 
fatigue at wind farm scale, including nonlinear wave loading-induced resonance. We set 
out to address this through three main objectives:


Objective 1: Create a library and meta-model for customised nonlinear time series of 
environmental conditions, making fully nonlinear wave kinematics industry-accessible.


Objective 2: Assess accumulated fatigue sensitivity to a range of environmental and 
operational conditions, identifying critical cases that would inform and improve efficiency 
of the fatigue risk model. 


Objective 3: Develop a predictive physics-informed machine learner for lifetime fatigue 
risk on wind farm scale. The proposed objectives will facilitate future research and joint 
industry projects to address the wind farm scale effects and their integration in efficient 
lifetime fatigue models.


Summary of Work Conducted  

This section reports achievements across all three work packages: Environmental 
conditions (WP1), Fatigue Sensitivity (WP2) and Risk Forecast Model (W3).


WP1: Environmental conditions 

Non-linear wave kinematics were simulated in a fully non-linear fashion using the Higher-
Order Boundary Element Method (HOBEM) library. This process was facilitated by the 
University of Hull’s HPC system Viper, using six different seeds for simulation in line with 
industry standards (IEC 61400-3). The resulting dataset covered a total of 381 different 
sea states with significantly varying wave heights and peak period in 30 meters deep 
water. The parameters for this simulation were defined based on the span of conditions 
recorded within the FINO-1 offshore dataset [2].  This is illustrated in Figure 1 on the right. 
Twenty-five wind conditions were also simulated using TurbSIM, to provide turbulent flow 

fields based on mean hub height velocities spanning from 0 to 25 ms-1.  
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WP2: Fatigue Sensitivity 

Numerical simulations were conducted in this WP using the aero-hydro-elastic-servo 
simulation software FAST(v7) [14] to obtain the monopile mudline fore-aft bending 
moment (My) for the reference NREL-5MW wind turbine [15] with OC3 monopile 
foundations [18] in 30 m water depth. The monopile was modelled as rigidly fixed to the 
seabed, and two turbine operational conditions were simulated, power-producing 
(operational) or parked, whereby the appropriate blade pitch and rotor speed were 
applied [15].  As per IEC 61400-3 design standards [16] six 10-minute numerical 
simulations were conducted with different wind and wave seeds for each combination of 
sea state (n. 381), wind speed (n. 25), and operational condition (n. 2), resulting in the 
output of My for 114,300 environmental-operational scenario time series. This is 
conducted for both linear and fully non-linear wave kinematics. An example time series of 

 for a given scenario is presented in Figure 1a, for which rainflow counting techniques 
and Miner’s rule are applied to determine the associated fatigue and damage equivalent 
load. Time-domain simulations of   are used to determine the associated monopile 
damage fraction for each environmental-operational condition using a time-domain 
approach [17].


My

My
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Fig 1: 

Fig 2: 



WP3: Risk Forecast Model 

Based on the outputted fatigue damage datasets for each environmental and operational 
condition, a machine learning meta-model was then developed based on Convolutional 
Neural Networks (CNN), in the first instance.  This process requires some trial and error to 
determine the most appropriate layers and parameters required to obtain the lowest 
validation error. A simplified representation of the model architecture is depicted in Figure 
3a. The model test results are presented in Figure 3b, and demonstrate the capability of 
the model to provide a reasonable prediction across the full range of Damage Equivalent 
Loads simulated. The model was subsequently retrained based on the direct stress 
outputs, as opposed to equivalent loads, enabling forthcoming capacity to implement 
lifetime damage estimations. 




The deep learning model used was a CNN with a single convolutional and max pooling 
layer, using 64 filters and a kernel size of 7, two dense layers (with 64 and 32 units), a 
ReLU activation and an Adam optimiser with mean-squared error loss function. Dropout 
was applied on our max pooling layer (0.2) and the first dense layer (0.1). The model was 
trained over 100 epochs with a batch size of 64. The training inputs and outputs were 
normalised and implemented with a random train-test split of 80%-20%. 


Project Results 

We generated results in three areas: (i) the assessment of short-term monopile damage 
including the influence of wave nonlinearities; (ii) accumulated damage using a traditional 
lumping method; and (iii) the development of a machine learning-based meta-model.


Assessment of short-term damage — We can see from Figure 4a that when the turbine 
is parked, the effect of wind speed is negligible and the influence of wave properties 
dominate. Here, larger significant wave heights correspond with the greatest damage. 
This is indicated by the distribution of the red scatter plot being skewed significantly 
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towards larger FNL values. Similar (although less severe) behaviour is also seen in 
operational conditions. This identified the conditions that are wind- rather than wave-
dominant. A deeper insight into the operational conditions is given in Figure 4b, showing 
the distribution of the difference between damage from fully nonlinear and linear waves. 
Here it can be seen that the importance of wave nonlinearities increases at larger 
magnitude peak wave heights. Although, when the turbine is operational, there is an 
additional dependence on the wind speed, with the largest damage difference occurring 
at the turbine rated wind speed and slightly lower (Figure 2b).


Accumulated damage — Here our results shows showed that the accumulated damage 
over an example year is remarkably close when comparing the use of linear and fully non-
linear waves kinematics, with a difference of only 0.71%. Inspection of the loading cases 
revealed differences of up to 7%. It was previously shown that that the inclusion of fully 
non-linear wave kinematics is most critical at larger significant wave heights, yet lumped 
load cases did include significant wave heights over 5 m. Given the conditions associated 
with higher magnitude damage are not discretely included in lumping methods, we 
hypothesised that this may result in an underestimation of accumulated damage. These 
findings motivated the use of fully non-linear waves in the application of the previously 
introduced CNN meta-model (WP3) and the use of hourly data to provide more accurate 
temporal damage estimations.


Machine learning meta-model — The cumulative damage throughout the example year 
determined by the meta-model demonstrated good agreement with the data lumping 
approach. This supports the traditional data lumping approaches for an operational 
turbine, yet the effects of downtime and parked turbines on accumulated damage values 
requires further evaluation. Fundamentally, the results offer a promising new approach to 
obtaining high temporal frequency updates on monopile damage through the use of a 
meta-model.
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Summary of Dissemination and External Engagement  

We held two stakeholder workshops during the project, on for kick-off in August 2021 and 
one to update the partners and consult on ongoing issues at mid-term.


Individual conversations on project requirements took place with partner Eleven-I in the 
scope of the Aura CDT Conference in Hull in September 2021; and further engagement 
took place to further explore suitable approaches to conduct physical modelling 
experiments that will support cross-comparison on numerical simulation results in 
January 2022.


Communication with partner TECOSIM has been continuous and intensified during the 
final three months with the aim of exploring suitable approaches for cross-comparison of 
fatigue results.  


Project progress was presented at the Supergen 4th Annual Assembly, with the project 

receiving 1st prize in the poster competition.


A paper summarising project results was accepted for oral presentation and publication 
at the European Workshop on Structural Health Monitoring (EWSHM). 


We also ran a Hackathon on AI for Sustainability in March 2022, funded through a NERC 
Discipline Hopping grant, and features this projects as one of three for participants to 
work on. The event was attended by about 30 undergraduate and postgraduate students, 
who collaborated to developed a set off additional machine learning baselines.  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