

Wave and Turbulence Interaction and Measurement at Tidal Sites

29th Sep. 2022 M. Togneri, A. Williams & I. Masters

Contents

- What is the problem with measuring turbulence?
 - Why is it waves?
- Separating turbulence and waves:
 - Spectral filter wavelet synchrosqueezed transforms
 - Statistical filter empirical orthogonal function analysis
 - Combined filter
- Assessing filter performance

Turbulent kinetic energy k

- Wave action is clearly driving near-surface k_{ADCP}
- We therefore observe that k_{ADCP} measures both turbulence and waves

 $k_{\text{ADCP}} = k_{\text{t}} + k_{\text{w}}$

 We want a filter to separate these phenomena

Spectral filter

WTIMTS

WTIMTS

Spectral filter results

WTIMTS

Swansea University

Prifysgol Abertawe

Statistical filter - EOFs

 Decompose space- & time-dependent variable (e.g., TKE) into separate time and space modes

$$\tilde{k}(\boldsymbol{x},t) = \sum_{i=1}^{N} \text{EOF}_{i}(\boldsymbol{x}) \times \text{EC}_{i}(t)$$

- Modes are ordered by magnitude of autocorrelation explained
- Waves are expected to have a common shape ($\sinh^2(z)$)
 - Therefore they could be picked out as a common mode
- If they are dominant, the "wave" mode should be the 1st mode
- Method modified to deal with mean bias

Statistical filter results

WTIMTS

Swansea University Prifysgol Abertawe

Combined filter

- Spectral/WSST filter and statistical/EOF filter apply on either side of the variance method
- Therefore combining the methods is straightforward

Combined filter

log₁₀ TKE, J·kg⁻¹

Combined filter

100

80

Relative error - effect of magnitude cap with filter depth 120%, depth 10% 100 Average relative error (%) EOF filter only Both filters 80 60 40 20 0 Cap 0.02 Uncapped Cap 0.01

Average relative error (%) 60 40 20

0 Width 5% Width 10% Width 15%

Relative error - effect of filter width with constant filter depth of 120%

EOF filter only

Both filters

Offshore Renewable

Energy

Superge

Conclusions

- A combined spectral-statistical filter for ADCP measurements of TKE has been developed:
 - Simple structure
 - Minimal computational cost
 - Improved error vs. waves
- Open source code available at github.com/MTogn/WTIMTS
 - User manual also available

