Modular PTO for Wave Energy Converters (MP-WAVE)

Jonathan Shek (PI), Michael Merlin, Joseph Burchell & Nan Zhang

Project Aims

- Produce an optimized design of a modular integrated power electronics and permanent magnet generator topology
- The design and fabrication of integrated modules
- The production data which will feed into an LCOE & O&M analysis.
- Investigate modern materials and manufacturing processes

Project Background

General Wave Energy and Environment Challenges

- Velocity is generally reciprocal; hence voltage is not a steady sinusoidal.
- Complex process to model with a wide variety of velocity and loading profiles
- High energy densities where power take off and power electronics survivability is key
- Remote and extreme environment where maintenance or repairing operations are difficult to achieve
- WECs have a preferred power performance region but also must operate in extreme conditions.
- Generally, there is no provision for mechanically decoupling power take off
- When the WEC responds to very large waves, the generator may experience speeds of up to 6 times the design velocity

Modular Technology

Modular and multi stack systems have potential benefits for ORE

The CGEN Generator Technology Outline

- Modular stator arrangement containing air cored stator assemblies ٠
- Modular rotor or linear translator assemblies containing active magnetic ٠ material
- An axially stackable generator topology that can increase torque and power through the addition of C-Gen stages
- Generator divided into several axial generator stages that are electrically ٠ independent

Modular power electronics lends itself to a modular and stackable generator system and could vastly increase the benefits of this technology

Generato

Radial Flux Generator composed of several C-Cores

Assembled Rotary Cut-away section through Rotor and Stator Module

Stacked Generators for higher ratings

Modular Power Electronics for 16kW C-GEN Machine

- A 16 kW C-GEN machine is used in this project. It consists of 2 parallel, concentric stages, with each stage formed of 6 arc-shaped.
- Two modules of the 16kW machine use the "modular power electronics technology".
- Converters are connected in parallel in the nominal state
- Converters can be transmitted to series by novel circuits-electric gears when the machine operates in the low-speed region.

Electric gear

- Improve the modulation index of the rectifiers when the electrical machine operates in the low-speed region.
- The switch status is determined by the amplitude of the reference voltage (U_{ref}) used in the control system
- When the switch is open, the two rectifiers are connected in parallel , then VDC_L1 = VDC_L2 = VDC.
- When U_{ref} is smaller than the threshold, the switch is closed. The two rectifiers are connected in series ,then VDC_L1=VDC_L2=VDC/2.

Simulation results

- Simulation results indicate the modular power electronics can improve the modulation index. ٠
- The ITHD and efficiency are therefore improved. ٠

80

Active

Rotational Speed(RPM)

Hardware: PCB Design

• One rectifier and one electric gear are placed in the right side of the PCB, and the control system is placed in the left side

• The TI LaunchPad which contains a TMS320F28379D microcontroller (MCU) is plugged on the bottom of the PCB.

• The control program is downloaded to the LaunchPad, which can be interfaced with Matlab.

Top layer of the PCB

Bottom layer of the PCB

Hardware: PCB Design

- Four PCBs are connected with each other via 2.5mm² cables.
- The communication between the master MCU and slave MCUs is realized by RS485 standard, and the signals are transmitted through category 5 cables.
- All slave PCBs are powered by the master PCB, whose power is supplied by a 12V DC power

Communication schematic

Prototype Modular PTO

Module Material Protection Investigation

Manufacturing Assessment

 Injection moulding, compression moulding, transfer moulding, thermoforming and dip coating were assessed for suitability to pot and protect modular stator coils

Material Assessment

 Based on manufacturing techniques, suitable materials were investigated for their suitability epoxy, cross linked polyethylene, polyphenylene sulphide, polypropylene copolymer, polypropylene homopolymer and polycarbonate

Material Modelling

• A stator blade was simulated using these materials and assessed against operational loading

Material Testing

• Various compatibilizers, used to help bonding between differing materials, where investigated to aid manufacture

Module Material Protection Outcomes

Manufacturing Techniques

- Injection moulding holds significant promise → very high initial cost
- Transfer/compression moulding are possible alternatives
 → lower production speed
- Dip moulding provides the cheapest option

Material Options

- Polypropylene (PP) \rightarrow most promising all round material
- Compatibilizers help improve the bonding of PP to different materials, including copper

Modelling Outcomes

- Polyphenylene sulphide, polypropylene and polycarbonate provide comparable support to the blade suitable for operation
- Polyphenylene sulphide performed best in all simulations

