

SEAMLESS SharEd Anchor Multidirectional Load Envelopes with Strength Synthesis

Supergen ORE Autumn Assembly

Hitesh Halai, Benjamin Cerfontaine & Susan Gourvenec

September 2022

Floating wind challenges

Floating wind technologies are developing fast

- Adapted to great water depths
- Each floater is maintained by at least 3 mooring lines (and anchors)

- Shared anchors to reduce the overall mooring loads and costs
- Similar for floating WEC

Geotechnical ORE Challenges

- Cyclic loads on vertical and horizontal planes varying direction & magnitude
- Lateral-vertical interaction

Outcome:

- Varying directions and magnitudes of resultant anchor load out of plane (with load reversal)
- Adding (H, θ_h) to (V, θ_v) with >1 mooring lines results in excessive vert. displacements and ratcheting of the pile

SEAMLESS:

SharEd Anchors Multidirectional Load Envelopes with Strength Synthesis

Goals

- I. To identify a method for shared anchor **geometry optimisation**.
- 2. To develop new **design guidance**.

Research questions

- I. What threshold level of upwards cyclic load can be sustained without significant ratcheting?
- 2. How does the stress history of **vertical-lateral load interactions** affect the capacity?

Prof. Susan Gourvenec,

Chair of Intelligent and Resilient Ocean Engineering (IROE)

Physical modelling & Design framework

Centrifuge tests

Outcome:

- Sand material
- Monotonic, in-plane (I-P) & multi-directional (M-D) cyclic loading
- Control pile loads
- Measure displacements and rotations

Design framework

Outcome:

- Enhanced database of results
- Quantify safe V-H load combinations & amplitudes in single stability framework to avoid failure/ratcheting ('wiggling') with cycling

Loading scenarios

University of Southampton

Time

5

post cyclic monotonic

capacity

Time

Summary

SEAMLESS: addresses geotechnical challenges associated with shared anchors and multidirectional cyclic loading

- I. Highlighted effect of adding (H, θ_h) to (V, θ_v) for shared anchors
- 2. Representative in-plane & multidirectional load scenarios to be modelled in the geotechnical centrifuge
- 3. Develop database to understand V-H interaction & degradation/improvement with cycling
- 4. Proposed design framework for shared anchors

Thank you