Tidal Turbine Benchmarking Project: Stage II – Waves and Yaw

Oxford: Richard Willden, Xiaosheng Chen, Nijmeh Marouf, Yadong Han, Sam Tucker Harvey, Ian Campbell, Chris Vogel, Federico Zilic de Arcos

Bath: Anna Young, Ian Benson, Elias Marchetti

Edinburgh: Ross Calvert

Hull: Jim Gilbert, Kaushal Bhavsar, Tom Allsop

Manchester: Tim Stallard, Hannah Mullings

8th September 2025

This project is being funded jointly by The UK EPSRC Supergen ORE Hub EP/S000747/1 & EP/Y016297/1, RHJW's EPSRC Fellowship EP/R007322/1 & the EPSRC CoTide programme EP/X03903X/1.

Benchmarking Project: Overview and Objectives

Unsteady loading and the inability to confidently predict unsteady loading and to quantify errors drives unnecessary redundancy and design conservatism.

• Objectives:

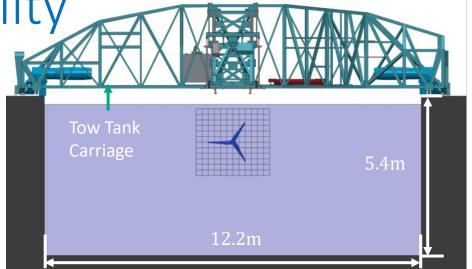
- i. improve accuracy of modelling techniques,
- ii. improve confidence in the use of modelling techniques,
- iii. quantify modelling errors for different techniques under different loading scenarios,
- iv. development of novel measurement techniques.

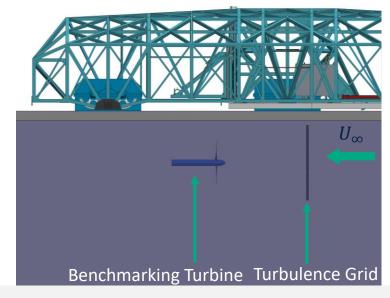
Approach:

- conduct a large laboratory test of a highly instrumented tidal turbine in waves and turbulent currents to provide underlying data,
- ii. conduct a series of community wide (academia and industry) blind prediction exercises with staged data release, leading to open access datasets.

Requirements, Tests & Facility

Test requirements:

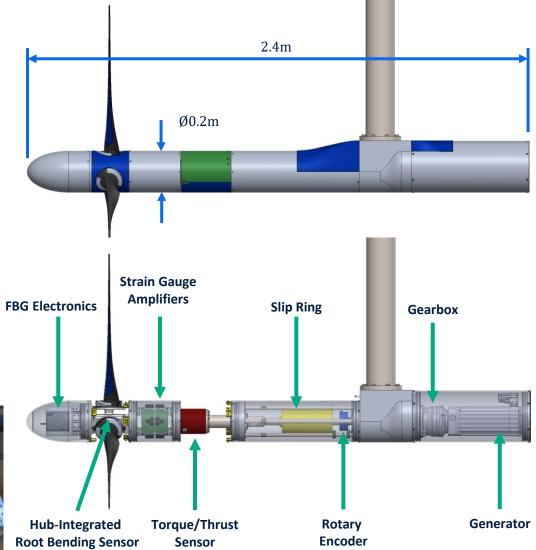

- Require low blockage experiments with a large diameter rotor for in-blade sensing and Reynolds independence,
- Flume options blockage too high,
- Tow tank low blockage but turbulence low,
- Solution: tow tank with an upstream turbulence grid


Test conditions:

- Stage 1: Uniform flow
 Uniform flow + Grid generated turbulence
- Stage 2: Uniform flow + Waves
 Yawed uniform flow

QinetiQ towing tank facility, Haslar, Portsmouth UK

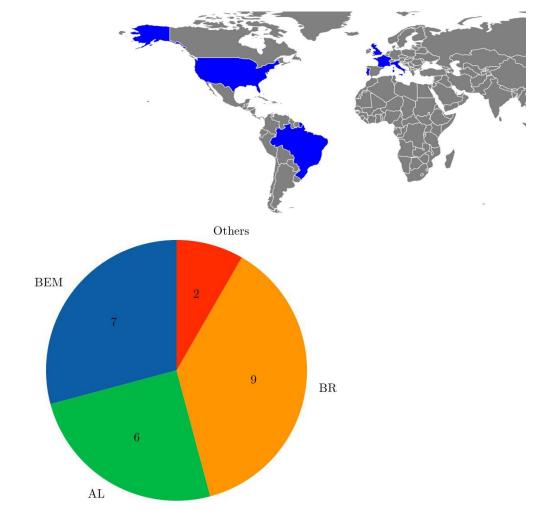
- 270m (L) x 12.2m (W) x 5.4m (D)
- Tow speed 1m/s
- Tow length approx. 150m, settling time ~15mins.



Instrumented Turbine

- 1.6m diameter rotor / 0.2m diameter nacelle
- Two blades instrumented with strain gauges at six radial locations for flapwise and edgewise bending moments
- Remaining blade instrumented with fibre Bragg sensors
- Individual root blade moments measured with hub – integrated root bending sensors
- Torque and Thrust measured by shaft mounted transducer upstream of front bearing

Timeline



Stage 1: Benchmarking Participants

- 12 collaborating research groups:
 - from across academia and industry
 - from 6 countries; UK, France, Italy, Portugal Brazil & USA.
- 26 submissions from a wide range of methods falling into 5 categories:
 - Blade Element Momentum (BEM)
 - Blade Resolved CFD (BR)
 - Actuator Line CFD (AL)
 - Boundary Integral Equation Model (BIEM)
 - Vortex methods

Benchmarking cases

	Low Turbulence (LT) Cases												
Case No.	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	XIII
\mathbf{U}_{∞} [m/s]	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
λ	4.02	4.52	5.03	5.36	5.53	5.78	6.03	6.53	6.70	7.04	7.20	7.54	7.87

	Elevated Turbulence (ET) Cases											
Case No.	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	
\mathbf{U}_{∞} [m/s]	0.9207	0.9207	0.9207	0.9207	0.9207	0.9207	0.9207	0.9207	0.9207	0.9207	0.9207	
λ	3.91	4.46	4.91	5.37	5.64	5.82	6.19	6.37	6.92	7.37	7.73	

- Participants asked to concentrate on priority (yellow) cases.
- LT cases submitted by 24 participants, ET cases submitted by 18 participants.

Participants: Blade Resolved

Submission	Solver	Turbulence Model	State	Wall Treatment	Mesh Size	Flow Domain	Free Surface	
blueOASIS-	ReFRESCO				MRF *			
BR-RANS	2.8.0	k - ω SST	Steady	Resolving	34.3M	WR §	None	
CHE-BR-	CTAD COM	1 000	II4 4	D 1!	2 534	TTC +	VOE +	
uRANS	STAR-CCM+	k-ω SST	Unsteady	Resolving	3.5M	TTG†	VOF ‡	
CNR-INM-	X NAVIS	C A	II4 4	D 1'	2434	MDEWD	NI	
BR-uRANS	(in-house)	SA	Unsteady	Resolving	24M	MRF WR	None	
LOMC-BR-	O EOAM	1	C4 1	D 1	2614	MDE	NI	
RANS	OpenFOAM	$k - \omega$ SST	Steady	Resolving	26M	MRF	None	
NREL-BR-	STAR COM.	1 CCT	C4 1	F	4.223.4	MDE	NI	
RANS	STAR-CCM+	$k - \omega$ SST	Steady	Function	4.23M	MRF	None	
NREL-BR-	STAR COM.	1 CCT	II	F	01 1534	TTC	VOE	
uRANS	STAR-CCM+	$k - \omega$ SST	Unsteady	Function	21.15M	TTG	VOF	
UoE-BR-	0 50414	1 COTE	G. 1	D 1.	10.014	MDE	N	
RANS	OpenFOAM	$k - \omega$ SST	Steady	Resolving	18.8M	MRF	None	
UoO-BR-	0	1 000	C4 1	D 1!	2014	MDE	NI	
RANS	OpenFOAM	$k - \omega$ SST	Steady	Resolving	38M	MRF	None	
USP-BR-DES	OpenFOAM	DES SST	Unsteady	Function	33.6M	TTG	None	

^{*} MRF = multiple reference frame technique with by default a 120° cylindrical wedge domain of a single blade, or if specified the § WR = whole rotor geometry. † TTG = tow-tank geometry with rotating turbine submerged at experimental depth. ‡ VOF = Volume-of-Fluid free surface representation.

Participants: *Actuator Line*

Submission	Solver	Turbulence Model	Mesh Size	2D Polars	Polar Interpolation	Free Surface Rep.	Nacelle Model	Tip-loss Model	
QUB-AL-	OnerFOAM	LES	16.204	Provided	0:11	MOE 6	NI	CDA +	
LES	OpenFOAM	Smagorinsky	16.3M	*	Single polar	VOF §	None	SM ‡	
UoM-AL-	STREAM	l CCT	0.04M	Duovidad	Cinala mala:	NIDEC 8	ID #	Non-	
uRANS	(in-house)	k - ω SST 0.94M Provided Single polar		NDFS §	IB†	None			
UoM-AL-	DOFAS	I EO WALE	2014	Duari da d	Cinala nala:	NDEC	TD	CM	
LES	(in-house)	LES WALE	30M	Provided	Single polar	NDFS	IB	SM	
UoO-AL-	OnenEOAM	L . CCT	6 01M	Duarridad	Tu	NDEC	Danaluad	CM	
NRSM	OpenFOAM	k-ω SST	6.91M	Provided	Interpolation	NDFS	Resolved	SM	
UoO-AL-	OpenEOAM	L COT	6.91M	Dwaridad	Tu	NDFS	Dagalyad	WM	
NRWM	OpenFOAM	k-ω SST	0.911/1	Provided	Interpolated	NDL2	Resolved	VV IVI	
UoO-AL-	OmenEOAM	L . COT	10 00M	Duari da d	Tu	NIDEC	ID	XX/X / ±	
IBWM	OpenFOAM	k - ω SST	10.80M	Provided	Interpolated	NDFS	IB	WM ‡	

^{*2}D performance polars provided as part of the benchmarking exercise (from 2D RANS). § VOF = Volume of Fluid deform-able free surface, NDFS = Non-Deformable Free Surface. † IB = Immersed Boundary method. ‡ SM & WM = Shen et al.- and Wimshurst & Willden-type tip-loss models.

Participants: Blade Element Momentum

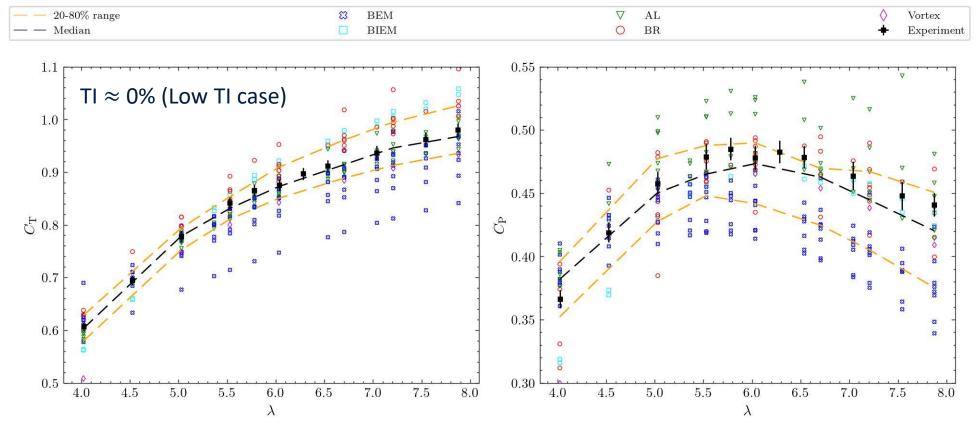
Submission	2D Polars	Polar	Turbulent	Induction/Wake	Root Model	Tip-loss	
	2D I Oldis	Interpolation	Inflow	Correction	Noot Wiodei	Correction	
		Do To		Modified			
LOMC-BEM	2D RANS	Re-Tu	None	Turbulent Wake	None	PDL †	
		Interpolation		Model			
	Provided * with						
NREL-BEM	Rotation	Single polar	None	Buhl Model	PDL	PDL	
	Correction						
SU-BEM	Drovidod	Cingle poler	Sandia	High-induction	PDL	PDL	
SU-BEM	Provided	Single polar	Method	Model	PDL	PDL	
UoE-BEM	XFOIL	De Internalation	Spectral	Buhl Model	GLT ‡	GLT	
UOE-DENI	AFOIL	Re Interpolation	Method	Buili Model	GLI +	GLI	
UFU-BEM-	Provided with						
Aerodas	Aerodas	Single polar	None	None	PDL	PDL	
Acrouas	Correction						
UFU-BEM-	Provided with Stall	Cinale males	None	None	PDL	PDL	
SD	Delay Correction	Single polar	None	none	FDL	PDL	
UoM-BEM-1	Provided	Single polar	None	GLT	None	GLT	
UoM-BEM-2	Dwayidad	Cingle poler	Import from	CLT	CLT	CLT	
UOM-BEMI-2	Provided	Single polar	LES	GLT	GLT	GLT	

^{* 2}D performance polars provided as part of the benchmarking exercise (from 2D RANS). † PDL = Prandtl-type hub / tip correction.

[‡] GLT = Glauert-type induction / hub / tip correction.

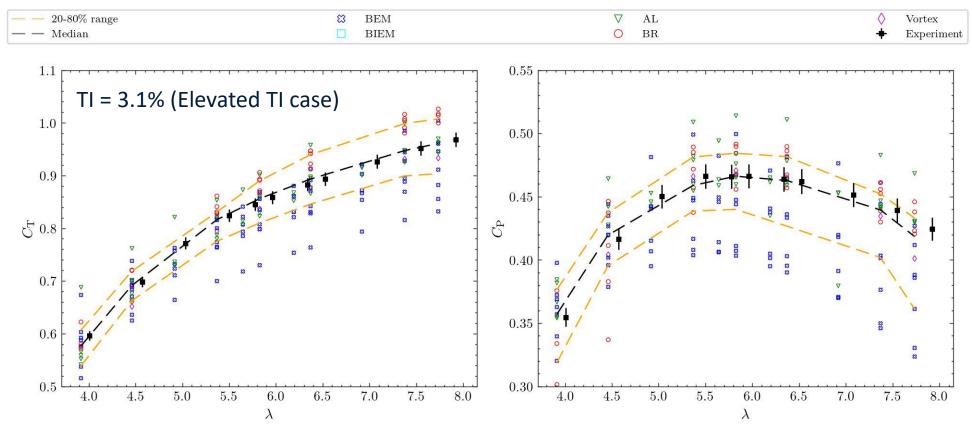
Other Participants:

Submission	Method Type	Description
		Boundary Integral Equation Model. Uses a Viscous Flow Correction model to
CND INM DIEM D12 / D22	DIEM	estimate the effects of viscosity on blade loads with input 2D flow lift and drag
CNR-INM-BIEM-D12 / D22	BIEM	curves calculated using XFOIL. D12 / D22 refers to alternative shape parameters
		used in modelling the curvature of the wake surface in the tip vortex region.
LOMC Verter	DD	3D unsteady Lagrangian Vortex Particle Method. Blades represented by lifting
LOMC-Vortex	BR	line model using tabulated 2D lift and drag coefficients.



Blind prediction results

- Power and thrust coefficients are generally well predicted. 20-80% prediction interval particularly good,
- 20-80% Thrust predictions are more tightly banded ($\pm 5\%$) than Power ($+7\% \rightarrow -11\%$),
- AL, BEM, BR, BIEM, Vortex, exhibit different biases, with results spread often linked to choice of sub-models.



Blind prediction results

- BR tendency to underpredict C_P and overpredict C_T .
- BEM methods tend to underpredict both.
- BIEM over-predicts C_T but C_P good at high TSR.

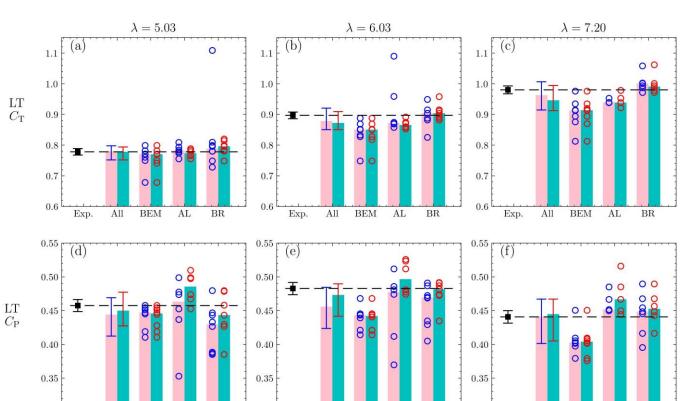
- Vortex method consistently under-predicts LT cases, but more accurate for ET cases.
- AL methods good alignment in both C_P and C_T .

Reduction in Prediction Uncertainty

Definition of data submission levels

- Level 1 (L1) completely blind submission
- Level 2 (L2) "user-error corrected" submissions correction for data input, setup errors etc
- Level 3 (L3) New results that use improved modelling techniques / approaches building on data comparisons from this and other exercises.


Improvements from **L1** to **L2** result from having a reliable dataset against which to verify model setup.


Table: Standard deviations of L1 and L2 solutions.

	Low Turbulence (LT) Cases											
C_T C_P												
	All	BEM	BEM	AL	BR							
L1	11.8	6.02	17.1	17.3	15.49	5.15	10.5	15.6				
L2	5.45	5.86	2.58	4.80	6.93	4.96	1.64	3.88				

	Elevated Turbulence (ET) Cases											
	C_T C_P											
	All BEM AL BR All BEM AL BR											
L1	14.7	7.71	2.26	22.8	16.5	6.55	1.54	22.3				
L2	6.22	7.44	5.04	3.03	7.87	6.15	4.33	2.56				

Figure: Medians and ranges of C_T and C_P for fully blind (L1) and user-error-corrected (L2) submissions, TI ~ 0% (LT case)

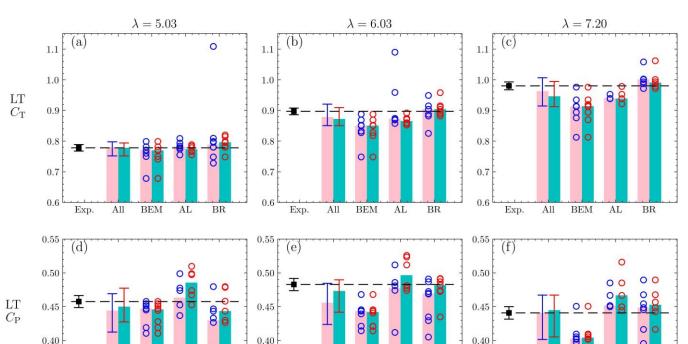
Exp.

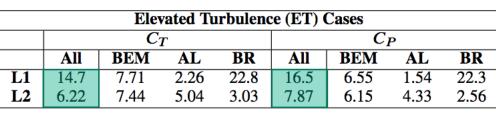
Reduction in Prediction Uncertainty

This has already **provided quantifiable improved** confidence in simulation model application.

Standard deviations of solutions reduced by over **50%** from c. 15% at **L1** to 7% at **L2** for **All** cases (methods, TSRs, TIs, C_T and C_D).


Further improvements to accuracy (**L3**) being sought by modellers through improvements and refinements to modelling techniques using benchmarking data as reference data set.


Table: Standard deviations of L1 and L2 solutions.


	Low Turbulence (LT) Cases											
	C_T C_P											
	All	All BEM AL BR All BEM AL BR										
L1	11.8	6.02	17.1	17.3	15.49	5.15	10.5	15.6				
L2	5.45	5.86	2.58	4.80	6.93	4.96	1.64	3.88				

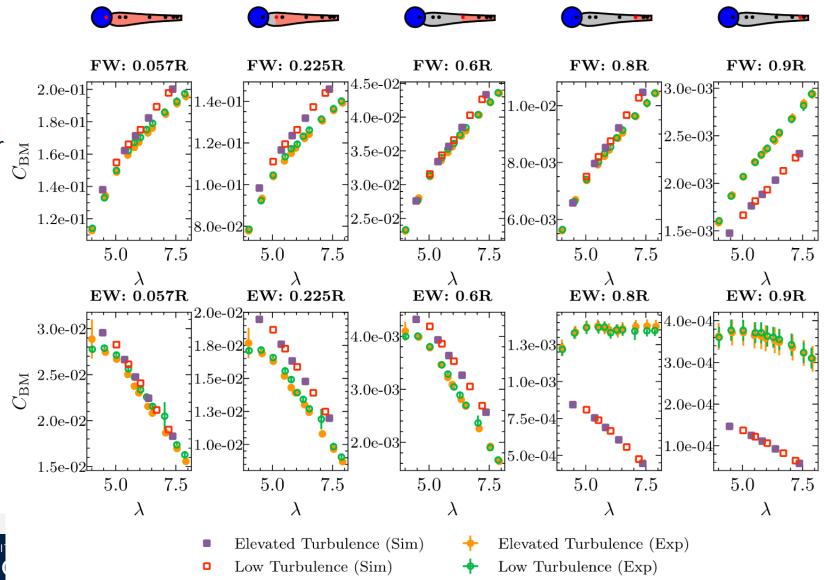
	Elevated Turbulence (ET) Cases											
	C_T C_P											
	All	All BEM AL BR All BEM AL BR										
L1	14.7	7.71	2.26	22.8	16.5	6.55	1.54	22.3				
L2	6.22	7.44	5.04	3.03	7.87	6.15	4.33	2.56				

Figure: Medians and ranges of C_T and C_P for fully blind (L1) and user-error-corrected (L2) submissions, TI ~ 0% (LT case)

0.35

Exp.

0.35

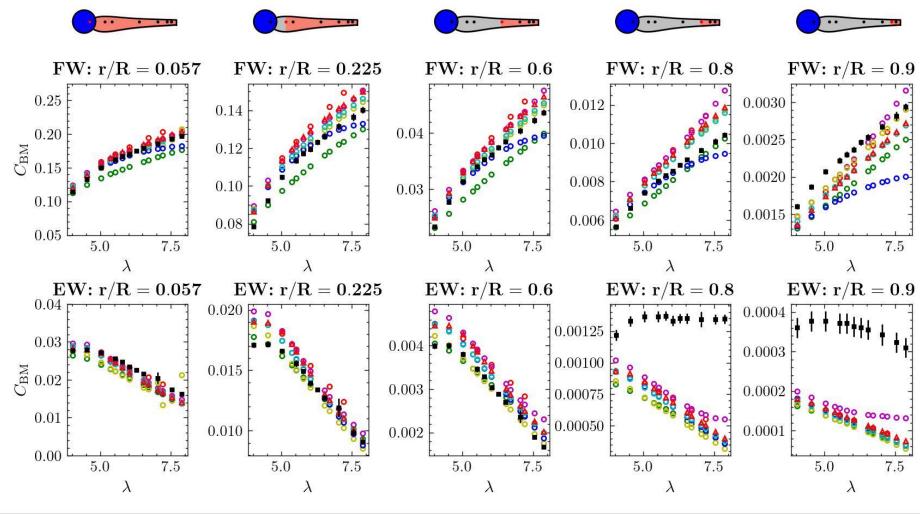

Bending Moments – Experiments & CFD

- Experimental data for spanwise distributed Flapwise (FW) and Edgewise (EW) BMs enables assessment of model performance at a more granular level.

 Experimental data for spanwise 2.0e-01 and 2.0e-01 level.
- FW and EW bending moment coefficients

$$C_{BM} = M_{BM} \frac{16}{\rho \pi D^3 U_{\infty}^2}$$

- Minor changes between Low and Elevated TI levels,
- CFD simulations over-predict EW in mid-span locations & under-predict FW & EW at tip,
- CFD Root BM well predicted.



Bending Moments – BEM & BIEM

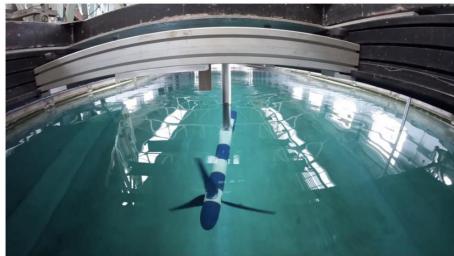
- BEM models tend to under-predict inboard bending moments, overpredict through midspan up to 0.8R (FW) and 0.6R (EW), and then underpredict further outboard.
- Divergence in model predictions outboard due to choice of tip correction & high thrust turbulent wake model.
- Over/under predictions lead to net underprediction in $C_T \& C_P$.

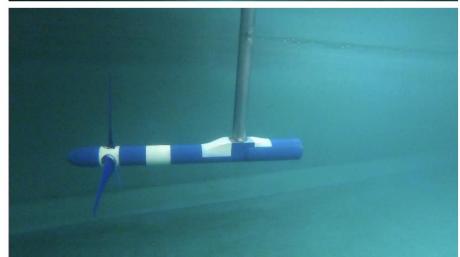
LOMC: BEM

Swansea University: BEM

UFU: BEM (Aerodas)

UFU: BEM (Stall Delay)


University of Manchester: BEM (DA)

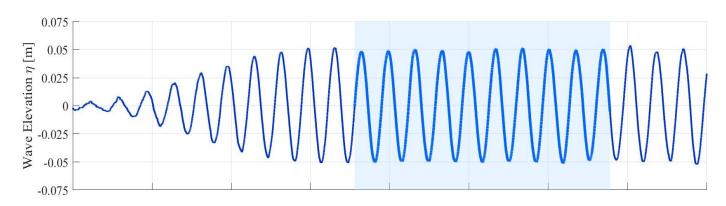

University of Manchester: BEM (HM)

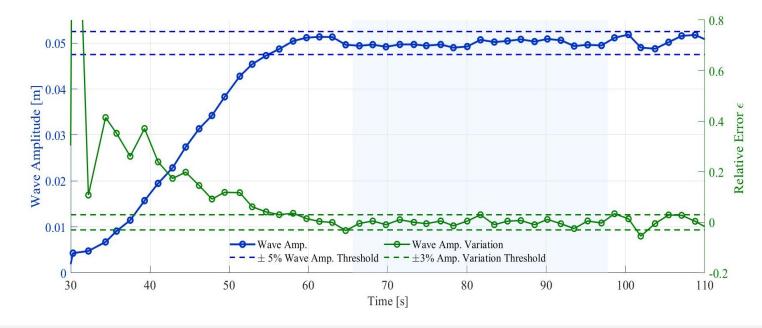
VOILAb: BEMExperiment

Stage 2: Experiments in waves

- Turbine tested at QinetiQ, March 3rd-21st 2025
- Wave characterization using 3 different techniques – 7 solid gauges, 6 ultrasonic probes and a rake of "barnacle" 5-hole probes
- Wave experiments covering 20 wave conditions
- Additional steady flow experiments with yawed turbine
- Total of 175 tests performed

Selection of Wave Conditions


Wave stability criteria:

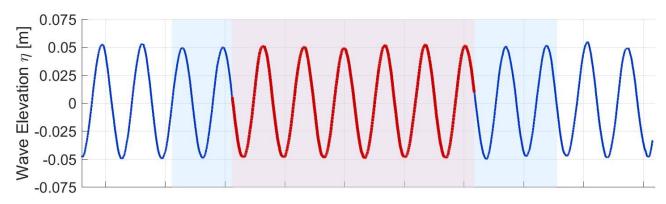

- <5% variation from the set amplitude
- <3% cycle to cycle amplitude fluctuation

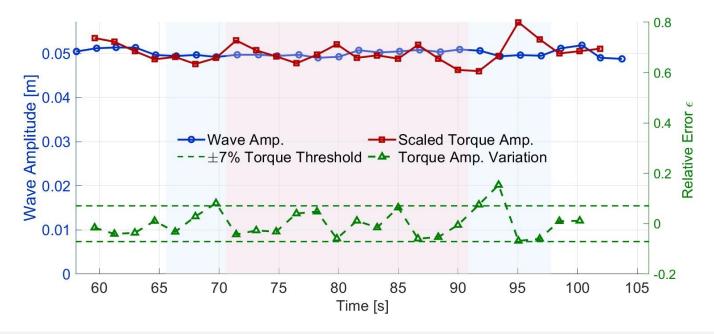
Torque stability criteria:

<7% cycle to cycle torque fluctuation

Selected cycles are combined with those from repeated tests conducted under similar conditions.

Selection of Wave Conditions

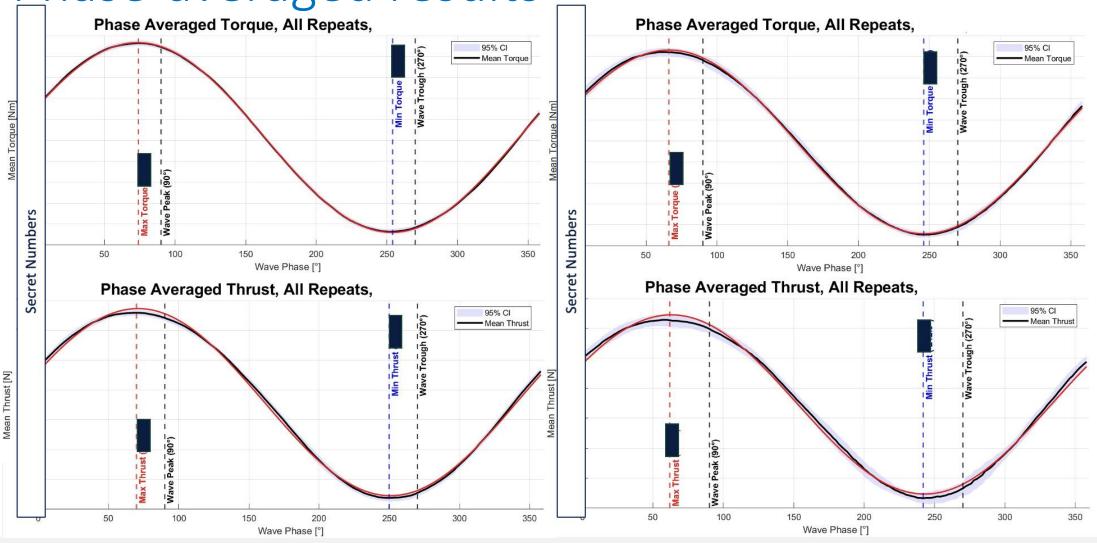

Wave stability criteria:


- <5% variation from the set amplitude
- <3% cycle to cycle amplitude fluctuation

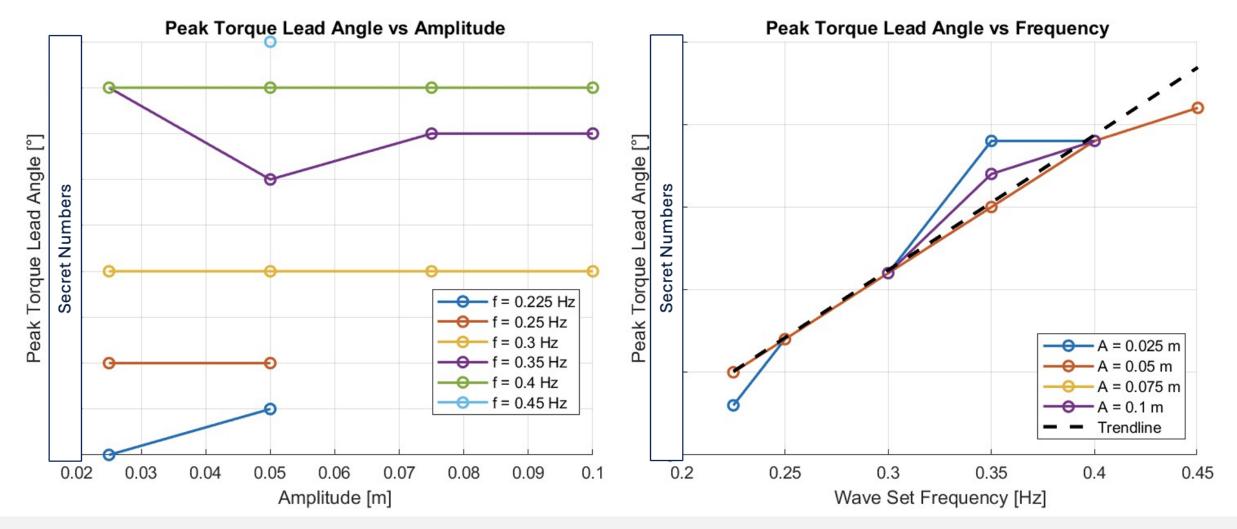
Torque stability criteria:

<7% cycle to cycle torque fluctuation

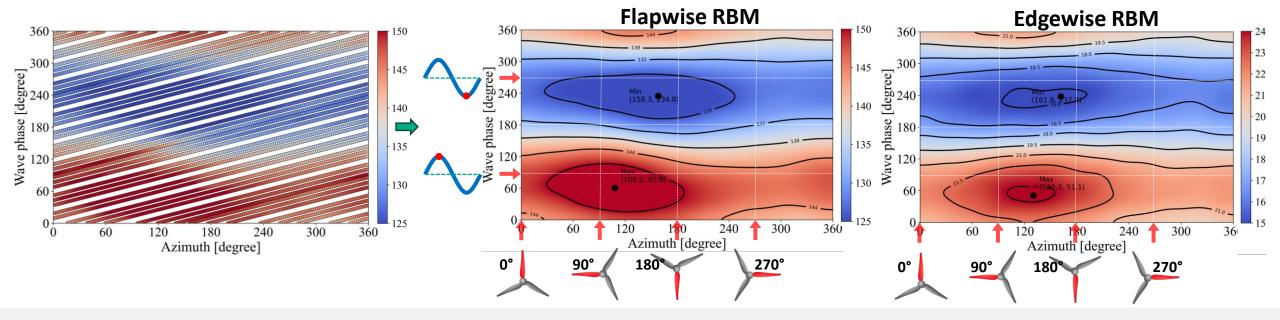
Selected cycles are combined with those from repeated tests conducted under similar conditions.



Phase-averaged results



Torque phase lag



Unsteady loading in waves

- RBMs from all 3 blades selected over stable wave cycles across all repeated tests,
- RBM data visualized in both wave phase and blade phase (azimuthal) coordinates,
- Flapwise and edgewise load maxima / minima do not occur in phase with wave crest / trough and blade top / bottom dead centre positions,
- **Hypothesis**: wave-induced perturbations correlated loads well along blade spans when blades near horizontal, but decorrelate loads when blades vertical due to depth decay.

Unsteady loading in waves

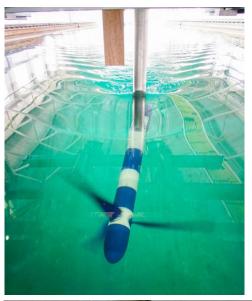
- RBM and bending moments along span are analyzed to quantify unsteady blade loading
- Wave-induced unsteady load amplitudes can reach up to 30% of the steady-state blade load (at H/D=0.0625)

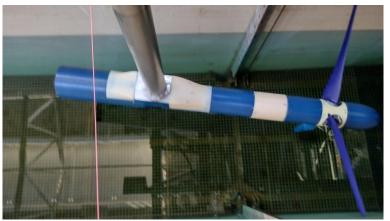
Stage 2: Wave test matrix and benchmark cases

- 7 solid wave gauges and 6 ultrasonic probes mounted on the carriage to measure wave elevation
- **Priority test cases** have been identified and will be released for blind prediction exercises
- Data for additional optional cases will be made available after the benchmarking exercises

Wave Test Matrix Wave Gauge Locations Frequency 0.225 0.25 0.3 0.35 0.4 0.45 0.5 • G5 • G4 **Amplitude** 3 • G3 U5 0.025 **Priority** Waves (m) 0.035 **X** U3 **Turbine** 0.05 **Priority Priority** Priority **Priority Priority** -2U4 0.075 × Ultrasonic Probe Wave Gauge 0.1 **Priority Priority** Blue: Best quality data **Green: More limited data available** x(m)

Priority: overlap cases from both 2022 and 2025 campaigns - previously specified for benchmarking

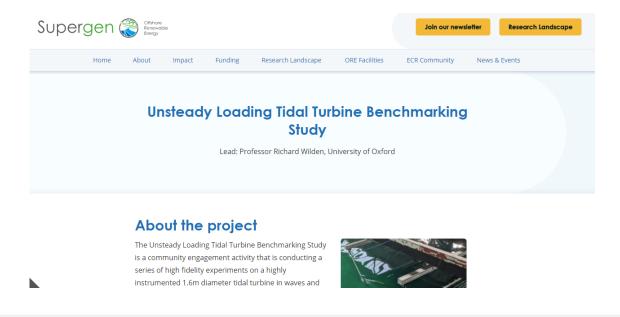




Yawed turbine tests

- Yaw angle range to reflect plausible misalignment at sites,
- +ve & -ve yaw angles tested,
- Low yaw (~8.5°) does not affect C_T & C_P . However, higher yaw angles (~12.5-13°) decrease C_P whilst maintaining C_T .
- Mean loads independent of yaw direction,
- But unsteady loads are significant.

TSR Yaw Angle	5.0	5.5	5.7	5.8	5.9	6.0	6.1	6.2	6.3	6.4	6.5	7.0
8.6°												
-8.8°												
12.6°												
-13.1°												



How to Participate?

For further details on the Tidal Turbine Benchmarking Project, including benchmark data and how to take part:

https://supergen-ore.net/projects/tidal-turbine-benchmarking Email Richard Willden <u>Richard.Willden@eng.ox.ac.uk</u> or Xiaosheng Chen xiaosheng.chen@eng.ox.ac.uk

- 1. Download **geometry data and test conditions** from the repository links on the Supergen website.
- 2. Perform blind predictions.
- 3. Download example data **submission file** and submission data formatting guide from the repository links on the Supergen website.
- 4. Upload data in specified format to us.

Data Depository & Test Conditions

• Turbine geometry:

- 3D CAD geometry of nacelle and tower
- 2D hydrofoil sections / chord and twist distributions
- 2D hydrofoil CFD data and link to experimental data
- 3D CAD geometry of blade
- Turbulence grid geometry:
 - 3D CAD data
- Test conditions:
 - TSR range / flow velocities
 - Measured wave heights and frequencies

Benchmarking Test Cases

- The table below illustrates all the wave conditions tested during the March 2025 campaign, all cases are tested under a tow-speed of $1.0 \ m/s$ and a rotation RPM of $72.0 \ (TSR \approx 6.03)$
- Depending on the modelling methodology simulation of more or less cases may be possible
- The **yellow** cases are the cases with best quality data, and those with the "Priority" tag are the ones recommended to be attempted by all simulation methodologies

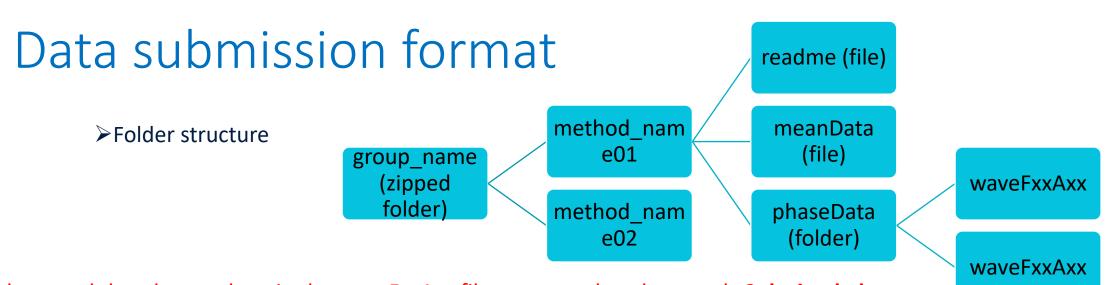
				Wave Freq	uency [Hz]			
		0.225	0.250	0.300	0.350	0.400	0.450	0.500
Maria	0.025			Priority				
Wave	0.035							
Amplitude [m]	0.050	Priority	Priority	Priority		Priority		Priority
finit	0.075							
	0.100			Priority		Priority		

Blue: Best quality data Green:

More limited data

available

Priority: overlap cases from both 2022 and 2025 campaigns - previously specified for benchmarking



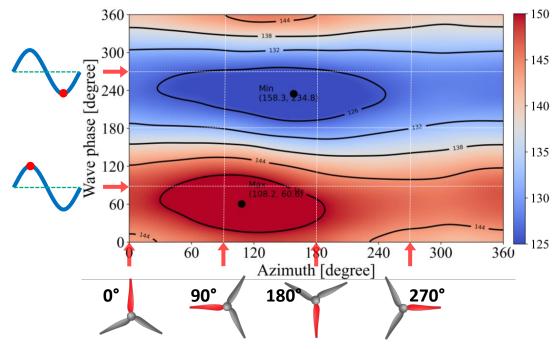
Please be noted that the numbers in the waveFxxAxx filename needs to be exactly **3 decimal places**.

	Wave Frequency [Hz]										
Wave Amplitude [m]		0.225	0.250	0.300	0.350	0.400	0.450	0.500			
	0.025			waveF0.300A 0.025							
	0.035										
	0.050	waveF0.225A 0.050	waveF0.250A 0.050	waveF0.300A 0.050		waveF0.400A 0.050		waveF0.500A 0.050			
	0.075										
	0.100			waveF0.300A 0.075		waveF0.400A 0.100					

Data submission format

- Format of the **readme** file: write necessary detail of the simulation methodology, sub-models, assumptions, conditions, domain size etc.
- Format of the **readme**
 - File format: **tab-deliminated ASCII file**, with header line of parameter names start with "#", and each column separated by a tab, numbers should be rounded to 6 decimal places.
 - Oct: thrust coefficient, Cp: power coefficient, RBM: root bending moment, FW: flapwise, EW: edgewise
 - o mean: time-averaged data, SE: standard error $\sigma_{\overline{C_T}} \approx \frac{\sigma_{C_T}}{\sqrt{n}}$, STD: standard deviation

#Ct (mean)	Ct (SE)	Ct (STD)	Cp (mean)	Cp (SE)	Cp (STD)	RBM_FW (mean) [Nm]	RBM_FW (SE) [Nm]	RBM_FW (STD) [Nm]	RBM_EW (mean) [Nm]	RBM_EW (SE) [Nm]	RBM_EW (STD) [Nm]
xxx	xxx	xxx	xxx	xxx	xxx	xxx	xxx	xxx	xxx	xxx	xxx
XXX	xxx	xxx	xxx	xxx	xxx	xxx	xxx	xxx	xxx	xxx	xxx
etc.											



Data submission format

> Format of the **phaseData** files

- Store the phase-averaged data (Ct, Cp, RBMs) for each of the phase angles of wave and phase angles of rotor rotation (examples on the right).
- File format: tab-deliminated ASCII file, with header line of parameter names start with "#", and each column separated by a tab, numbers should be rounded to up to 6 decimal places.
- Arranged as below:

#wavePhase [deg]	rotorPhase [deg]	Ct	Ср	RBM_FW [Nm]	RBM_EW [Nm]
XXX	XXX	XXX	XXX	XXX	XXX
XXX	XXX	XXX	XXX	XXX	XXX
etc.					

Advice for Modellers

- The exercise is not a competition but aims to improve the understanding of the relative strengths and weaknesses and limitations of the different modelling approaches,
- Experiments are also **imperfect** so we do not expect any simulation data to perfectly match the measurements.

Benchmarking Timeline

- Register your participation in the Stage II: Unsteady Loading in Waves benchmarking exercise by email to Xiaosheng Chen <u>xiaosheng.chen@eng.ox.ac.uk</u>
- October Webinar (TBC) with registered participants to clarify case set up and data submission requirements.
- Submit your blind prediction loading solutions by 16th January 2026.

Participation & benchmarking data

For further details on the Tidal Turbine Benchmarking Project, including benchmark data and how to take part:

https://supergen-ore.net/projects/tidal-turbine-benchmarking Email Richard Willden <u>Richard.Willden@eng.ox.ac.uk</u> or Xiaosheng Chen <u>xiaosheng.chen@eng.ox.ac.uk</u>

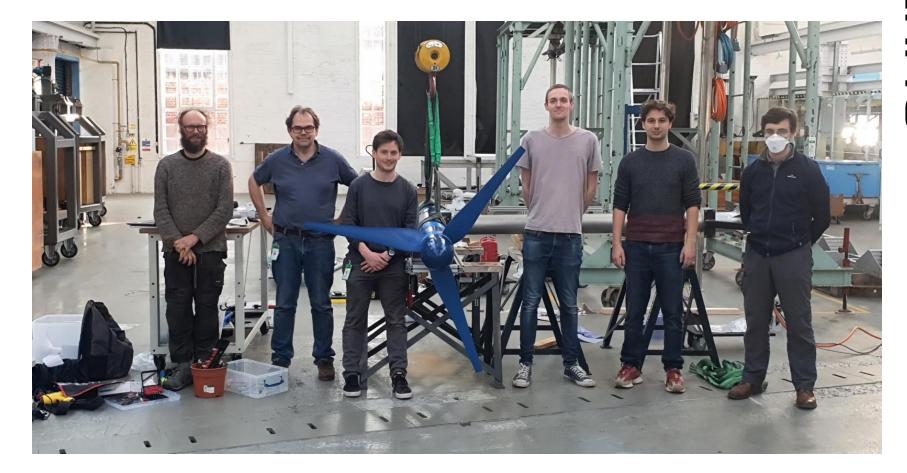
Stage I – Uniform Flow benchmarking data

Data repository currently being uploaded to the website (in the "Released Data Log")

Experimental data: Tucker Harvey et al. "Tidal Turbine Benchmarking Project: Stage I – Steady Flow Experiments" Blind predictions: Willden et al. "Tidal Turbine Benchmarking Project: Stage I – Steady Flow Blind Predictions" Full comparisons in companion Journal Articles in submission to Journal of Fluids & Structures

Stage II – Unsteady Loading benchmarking data

Data to be made available following final submissions to the blind prediction exercise on 16th January 2026 Wave loading data analysis ... in preparation Yawed loading data analysis ... in preparation



Questions?

