

PHASED DEVELOPMENT PROGRAMME

PHASE 1A – PROOF OF CONCEPT

- ·World's first multi-MW tidal turbine array
- ·4 x 1.5MW turbines
- .6 MW ROC accredited array
- •Entered operating phase 2018
- ·Over 22 GWh electricity generated to date

MeyGen 1A turbine operating

PHASE 1B - ENABLING PROJECT

- Demonstration of larger turbine rotors for improved yield
- Installation of subsea hub to connect multiple turbines through
- Innovations lead to step change reduction in LCOE
- ·All leases, consents and grid connection secured

PHASE 1C - COMMERCIAL ARRAY

- ·Offshore seabed lease and environmental consent secured
- ·Onshore land lease and planning permission granted
- ·Grid connection agreement in place

MEYGEN PHASE 1A

MEYGEN PHASE 1B - AR2000

	AR1500	AR2000
Rated power	1.5 MW	2.0 MW
Rotor diameter	18 m	20 – 24 m
Hub height	14 m	> 15 m

Increase in energy yield per turbine of >30% from AR1500 to AR2000 with 20 m rotor dia.

MEYGEN PHASE 1B – SUBSEA HUB

- Connects multiple turbines subsea
- Reduces number of export cables
- At MeyGen, reduces bore hole drilling operations
- Reduces number of converters, which also reduces onshore footprint

MEYGEN PHASE 1B - RESEARCH

FLOW MEASUREMENT

- Collaboration with Bangor University to deploy forward looking ADCP on new AR2000 turbine
- Measurements to characterise onset flow to turbines, facilitating easier and cheaper power curve testing (IEC 62600-200)

MARINE MAMMALS

- Collaboration with University of St Andrews and the Sea Mammal Research Unit (SMRU)
- Harbour seal tagging to track movements around MeyGen Phase 1A turbines
- Initial results indicate harbour seals spend 0.001% of their time in MeyGen consented area

MEYGEN PHASE 1C

Subject to final optimisation:

- 80 MW array
- Monopile turbine support structures
- 7 turbines connected to each subsea hub
- 25 year operating life
- Turbine size and rating TBC

COST REDUCTION & LEARNING

MONOPILE FOUNDATIONS

- Reduction in steel of 90% vs. gravity based foundations
- Provide greater flexibility to micro-site turbines in high energy regions

WET MATE CONNECTORS

- Proven to halve installation time offshore
- 65% lower installation cost vs. dry mate connectors

OFFSHORE EXPERIENCE

- 2 vessels on deck in winter weather conditions - proven
- Reduces vessel cost significantly by minimising total transit time

MASS MANUFACTURING

- Dedicated manufacturing facilities
- Cost reduction through economies of volume

MEYGEN PHASE 1C - RESEARCH

RESOURCE CHARACTERISATION & ARRAY OPTIMISATION

Collaboration with Imperial College London and University of Edinburgh

Imperial College London

- Array optimisation of UK sites using Thetis unstructured grid coastal ocean model
- Drone footage to characterise tidal stream energy resource over wide spatial coverage

FLUID-STRUCTURE INTERACTION

- Collaboration with Plymouth University on the Collaborative Computational Project on Wave Structure Interaction (CCP-WSI)
- Design of monopile structures for MeyGen Phase 1C
- · Interaction between flow and export cables

ENTIAL | 9

PROGRESS

EXISTING PROJECTS:

TOTAL ENERGY YIELD BEFORE 2017: >14 GWh, TOTAL ENERGY YIELD BETWEEN 2017-2019: >25 GWh

FUTURE PROJECTIONS:

TIDAL STREAM AND WAVE ENERGY COST REDUCTION AND INDUSTRIAL BENEFIT

- Projection based on aggregated data kW to MW scale devices, vertical/horizontal axis turbines
- Assumes 100 MW of installed deployment/year from 2021/22
- Estimated shortfall in clean energy of 100 TWh/year by 2030 (Based on ref scenario in BEIS Energy & Emissions Projections vs. 5th carbon budget)
- UK practical resource estimate: 15 GW

SUMMARY

MeyGen 1A (Proof of concept)

- Energy yield >22 GWh
- Significant learning and technology innovation –
 e.g. wet mate connectors reduce install costs by 65%

MeyGen 1B (Enabling project)

- AR2000 30% increase in energy yield/turbine vs. AR1500
- Subsea hub reduces balance of plant (export cables, converters) and bore hole drilling to reduce LCoE

MeyGen 1C (Commercial array)

- Monopiles cut cost by reducing steel usage by 90%
- Economies of volume

Research focus

- Marine mammal behaviour around tidal stream turbine arrays
- Reduction in LCoE array optimisation, monopiles, export cables, field measurements

