

Machine Learning for Low-Cost Offshore Modelling (MaLCOM)

Ajit C Pillai Supergen Autumn Assembly 2022

Background

- Installation, inspection, operation, and maintenance activities at ORE sites are governed by strict weather limits
- Weather delays have significant impacts:
 - Wikinger Wind Farm: **£17 million** additional cost due to inaccurate forecasts during installation
- Weather forecasts used in decision making currently provided by numerical models
- More accurate, turbine-specific forecasts can provide improved decision-making during installation, operation, and maintenance processes

Aims and Objectives

To demonstrate a **ML model framework** that can **integrate met-ocean sensor networks** and **physical models**, to **improve** the provision of met-ocean data

Spatiotemporal wave distribution

Physics-based models

High-fidelity High-computational

Relatively reliable Sparse data set

Objective: Develop **machine learning** models to act as surrogates that learn the **nonlinear mapping** from fixed points to spatially distributed wave data across a region.

Model Framework Overview

- Forecasting methodology divided into two models that are coupled:
 - 1. Spatial Nowcasting
 - Relate the conditions at point locations to the conditions throughout the model domain
 - 2. Temporal Point Forecasting
 - Use the conditions at the in-situ measurement locations to forecast future conditions at the same location
- Coupling models enables spatial forecasting

Spatiotemporal Results - WaveHub

- The proposed model has a similar level of accuracy as the UKMO model
- The proposed model show increased scatter with increased forecast lead time, but not apparent for the UKMO model

- A machine learning forecasting framework integrating in-situ buoy observations and a surrogate regional numerical wave model have been proposed and testing.
- The forecasting framework has **similar level of accuracy** with **Met Office** physics-based forecasting model, but requires only much **less computational resources**
 - Less than 30 s on 1 CPU to get 12-hour spatial wave prediction with half-hour interval over two years.

	WaveHub		FabTest	
H _s Forecast	Proposed Framework	Met Office Forecast Model	Proposed Framework	Met Office Forecast Model
1-hour ahead	0.9083	0.9210	0.7409	0.8163
12-hour ahead	0.8581	0.9258	0.6978	0.8114

Ongoing and Future Work

Industrial case studies considering turbine access
Work with partners to develop an optimized system
Design for operation with autonomous vessels

Improved sensors/sensor networks and integrationImproved/alternate physics-based models

•Incorporating satellite data sets

- •Mobile sampling/measurements
- •Consider other applications for accurate nowcast wave data
- •Improve historical data

Supergen ORE Hub and Royal Academy of Engineering are gratefully acknowledged for supporting this work.

fshore newable ergy

Royal Academy of Engineering