Supergen

. . == Met Office
University
of Exeter

SZ2FAR

/§ Royal Academy
@ of Engineering

Machine Learning for Low-
Cost Offshore Modelling
(MaLCOM)

Ajit C Pillai
Supergen Autumn Assembly 2022



University
Background of Exeter
e el - Installation, inspection, operation, and maintenance
BN P activities at ORE sites are governed by strict weather
limits
o » Weather delays have significant impacts:
jisysurice » Wikinger Wind Farm: £17 million additional cost due to
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& . " inaccurate forecasts during installation

» Weather forecasts used in decision making currently
provided by numerical models
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LCOE = £140/MWh . o
CF = 40% » More accurate, turbine-specific forecasts can

provide improved decision-making during
installation, operation, and maintenance processes
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Aims and Objectives

To demonstrate a ML model framework
that can integrate met-ocean sensor
networks and physical models, to
improve the provision of met-ocean data
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Physics-b*ased models In-situ Observations
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High-fidelity Relatively reliable
High-computational Sparse data set

Objective??)%velop machine learning models to act
as surrogates that learn the nonlinear
mapping from fixed points to spatially

distributed wave data across a region.




University

Model Framework Overview of Exeter
« Forecasting methodology divided into two  gsmFaemmrT @
. filling (Method in
mOdels that are Coupled‘ §2.b.1 Collect multi-resources raw Multi-positian Pradiction
Step 2: Define training Obselationcata
1. Spat|a| Nowcasting _dataset— Data pre-processing (§3.b)
* Relate the conditions at point locations to the Stepﬁ; Di,ta Input matrix X_temporal
(PR . normalization . .
conditions throughout the model domain (1 x n_past x feature_dimension)
Sits:rji;ggr;:::ﬂt:g Temporal model by LSTM (§3.c) L N
2. Temporal Point Forecasting Gl Temporal model prediction ¢ _
L. . . output matrix y_temporal Extract results from arbitrary locations
* Use the conditions at the in-situ measurement (1 xn.futurex . torget features)

locations to forecast future conditions at the Denormalization & Reconstruction

same location ,
Spatial model
input matrix X_spatial
(n_future x n_target_features)

Spatial model
outputs (H;)

* Coupling models enables spatial
forecasting

Spatial model by Chen et al. (2021)

T4n_fubure




Predicted Hs (m)

Predicted Hs (m)

Spatiotemporal Results - WaveHub &
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* The proposed model has a similar level of accuracy as the UKMO model

* The proposed model show increased scatter with increased forecast lead time, but not apparent
for the UKMO model
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Summary

* A machine learning forecasting framework integrating in-situ buoy observations and a
surrogate regional numerical wave model have been proposed and testing.

* The forecasting framework has similar level of accuracy with Met Office physics-based
forecasting model, but requires only much less computational resources

* Less than 30 s on 1 CPU to get 12-hour spatial wave prediction with half-hour interval over two years.

T T

Met Office Met Office
Proposed Proposed
Framework Forecast Framework Forecast
Model Model
1-hour ahead 0.9083 0.9210 0.7409 0.8163

12-hour ahead 0.8581 0.9258 0.6978 0.8114
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Ongoing and Future Work

Industrial case studies considering turbine access
*Work with partners to develop an optimized system
*Design for operation with autonomous vessels

sImproved sensors/sensor networks and integration
sImproved/alternate physics-based models

*Incorporating satellite data sets

*Mobile sampling/measurements

*Consider other applications for accurate nowcast wave data
*Improve historical data
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