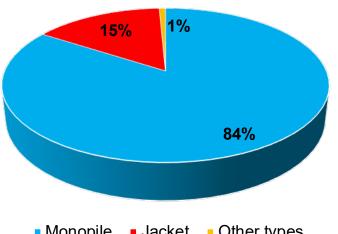
Supergen ORE Hub Annual Assembly 24th April 2024, Plymouth, UK

Corrosion and fatigue protection of offshore wind turbine structures using additive manufacturing technology (COATing)

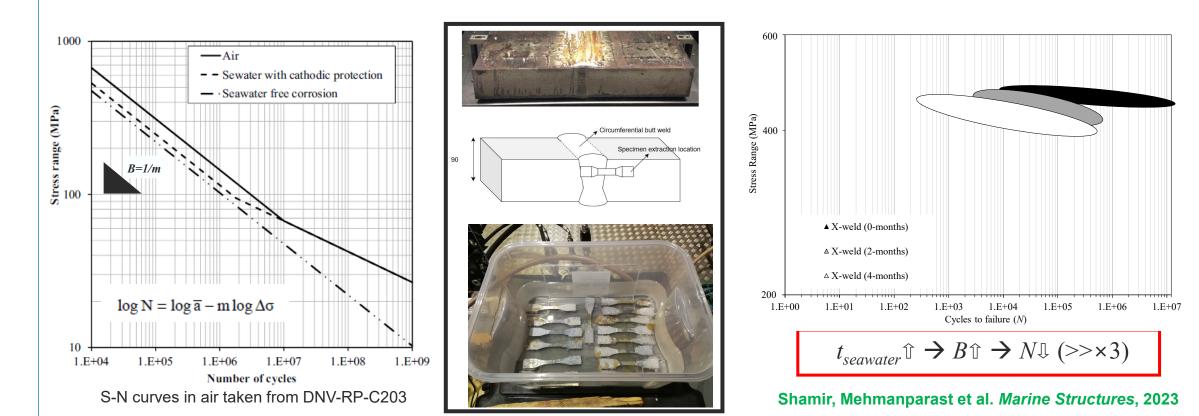

Prof. Ali Mehmanparast (PhD, MBA, CEng, CMgr) *Professor of Structural Integrity University of Strathclyde*

 \times

Offshore Wind Turbine Support Structures

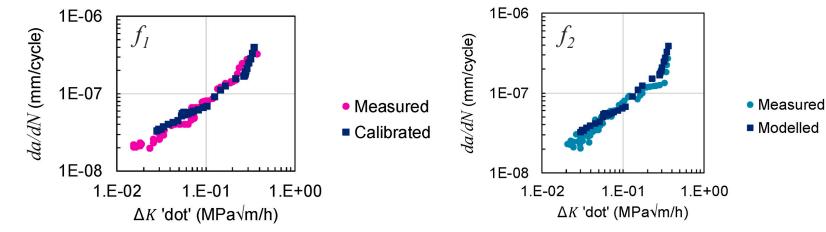
□ Offshore wind turbine (OWT) structures consist of: support structure, transition piece and tower.

- □ The majority of the installed OWTs in the UK and EU are supported using monopiles.
- **Corrosion** and **fatigue** are the dominant **material degradation mechanisms** in OWT structures, particularly at the circumferential welds of monopiles, which are in direct contact with seawater and subjected to cyclic fatigue loading condition.
- The overall aim of this project was to enhance corrosion-fatigue life of OWT monopiles using advanced manufacturing technologies.



UK's installed OWT foundation types

Corrosion effects on fatigue life of welds


- □ Monopiles are designed against fatigue failure, by employing appropriate S-N design curves recommended in international standards (e.g. DNV, BS) for different classes of weld (e.g. D, C1)
- Design curves heavily depend on the environment; air/cathodic protection/free corrosion
- □ In COATing project, the pitting corrosion effect on fatigue life of conventional welds (flush ground condition) was investigated by performing tests on S355 cross-weld specimens with 0, 2 and 4 months exposure to seawater, and **a time-dependent fatigue life reduction model was developed**.

New Approach for Corrosion-Fatigue Analysis

- The fracture mechanics parameter, ΔK, which is commonly employed in analysis of fatigue crack growth data in air and seawater is insensitive to the test frequency (i.e. time).
- □ To account for time dependency in conjunction with cycle dependency, new fracture mechanics parameters, ΔK and J were developed in COATing to analyse corrosion-fatigue crack growth data more accurately.
- □ Subsequently, **a new model** was developed, and validated using S355 experimental data, to predict the corrosion-fatigue crack growth behaviour at different frequencies.

$$\left(\frac{da}{dN}\right)_{CF} \left[at \ \dot{\Delta K}_{CF}\right] = \varphi \left(\frac{da}{dN}\right)_{air} \left[at \ 10^{-\lambda} \ \dot{\Delta K}_{air}\right] \qquad \qquad \lambda = \gamma P_{average} \left(1 - \frac{f_{CF}}{f_{air}}\right) \\ \varphi = 10^{\mu(1 - f_{CF})}$$

Ryan and Mehmanparast. Mechanics of Materials, 2023

Corrosion-fatigue life enhancement with WAAM

□ Wire Arc Additive Manufacturing (WAAM) technology is suitable for rapid and large-scale fabrication

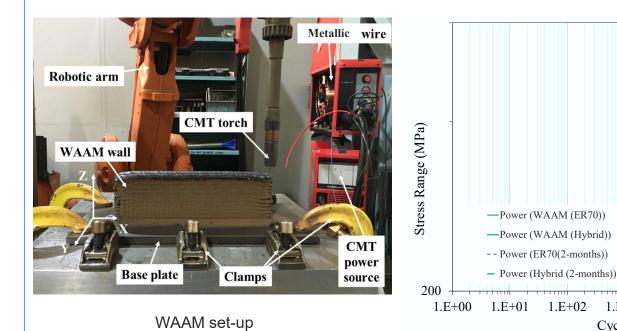
□ Hybrid WAAM deposition was conducted by mixing two alloys, ER70 and ER90, with **complementary properties** (fatigue and corrosion resistance) in the melt pool

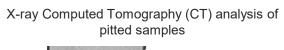
\Box Hybrid WAAM has been found to enhance fatigue ($\approx \times 100$) and corrosion-fatigue ($\approx \times 2$) life.

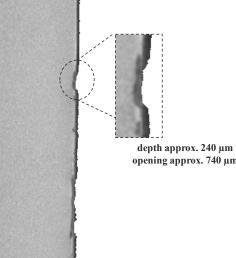
1.E+02

1.E+03

1.E+04

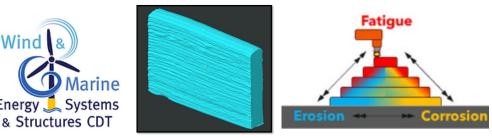

Cycles to failure (N)


1.E+05


1.E+06

1.E±07

This technology can be used as a **permanent coating technology** to protect critical parts of OWT monopile foundations such as circumferential welds.



Research Continuation

□ **CoTide** EPSRC-Funded Programme Grant: application of AM for life enhancement of tidal turbines support structures

WAMSS CDT EngD Project (Fraser O'Neill): Development of new hybrid AM strategies for life enhancement of ORE structures

Conclusions

- □ Time-dependent models have been developed to accurately estimate the corrosion life reduction factor and corrosion-fatigue crack growth behaviour of welded steel structures.
- □ The indicative S-N curves show that hybrid (ER70+ER90) WAAM technology can significantly enhance fatigue and corrosion-fatigue life, compared to ER70.
- □ The feasibility study conducted in the COATing project has led to further research projects which aim at employment of AM technologies for life enhancement of ORE steel structures.

Publications

- Shamir, M., Igwemezie, V., Lotfian, S., Jones, R., Asif, H., Ganguly, S. and Mehmanparast, A., 2022. Assessment of mechanical and fatigue crack growth properties of wire+ arc additively manufactured mild steel components. *Fatigue & Fracture of Engineering Materials & Structures*, 45(10), pp.2978-2989.
- Shamir, M., Braithwaite, J. and Mehmanparast, A., 2023. Fatigue life assessment of offshore wind support structures in the presence of corrosion pits. *Marine Structures*, 92, p.103505.
- Ryan, H. and Mehmanparast, A., 2023. Development of a new approach for corrosion-fatigue analysis of offshore steel structures. *Mechanics of Materials*, 176, p.104526.
- O'Neill, F. and Mehmanparast, A., 2024. A Review of Additive Manufacturing Capabilities for Potential Application in Offshore Renewable Energy Structures. *Forces in Mechanics*, p.100255.
- O'Neill, F., Shamir, M. and Mehmanparast, A., 2024. Corrosion-fatigue life enhancement of offshore renewable energy steel structures using hybrid wire arc additive manufacturing technology. *Additive Manufacturing*, Under Preparation.

Email: Ali.Mehmanparast@strath.ac.uk