

Offshore Renewable Energy

UoP Core Research Update Scott Brown

Data Collection for the Celtic Sea

Hindcast Data	Resolution				
Copernicus Europe's eyes on Earth	Latitude [degree]	Longitude [degree]	Temporal Resolution	Time Span	
Wave (ERA5)	0.5	0.5	Hourly	1940-2024	
Wave (UKMO)	0.014	0.03	3-Hourly	1980-2024	
Wind (ERA5)	0.25	0.25	Hourly	1940-2024	
Current (UKMO)	0.06667	0.11111	2D: Hourly	- 1993-2024	
			3D: Daily (12:00)		

Measured Data	Device	No. of measur ement	Temporal Resolution	Time Span	Variables
Wave	Waverider Buoys	17	Half hour	From 2005	2D spectra, raw displacement, bulk parameters
Wind	Lidar	2	10 min	2022- 2023	Speed (horizon, z), dispersion (horizon, z), direction

- Gathered met-ocean data to characterise met-ocean conditions for design. ٠
- Explore more detailed met-ocean parameter impact on floating structures response. ٠
- Generate a ML-based met-ocean prediction model in Celtic Sea for offshore decision-making. ٠

Engineering and Physical Sciences Research Council

Wind Speed (m/s

(0.0 : 2.0)

[2.0:4.0) [4.0 : 6.0)

[6.0:8.0) |8.0 : 10.0)

[10.0:12.0] (12.0:14.0)

[14.0:16.0] (16.0 : 18.0)

[18.0:20.0)

H. (m)

[1.0:1.5)

>20.0

Design Waves

- What is the typical variability in traditional approach? ٠
- Can design waves provide reliable estimate for any sea state?
- Is 99th percentile scaling appropriate for all sea states? ٠
- Are there regions of the parameter space where each ٠ method works best?

Energy

Superge

- Impact acceleration award
- Response-conditioning extended to combined wind and wave
- Are previous results transferable to other concepts?
- Constrained MLER: -5 to +20% of traditional approach.
- Single MLER: ٠
 - Good for Pitch and nacelle acceleration
 - Use with caution for the tower base response
 - Not suitable for semi-sub or barge mooring loads.

University of Plymouth Future Work

WS2 – Data:

- Generate comprehensive dataset share to community
- Representative design conditions and load cases
- Data-driven opportunities to improve offshore operations

WS4 – Design:

Supergen

- Extend design wave approaches for ORE floating structures:
 - Further FOWT and WEC concepts
 - Hybrid platforms
 - Future ORE concepts:
 - Flexible elastomer-based wave energy converters
 - Direct embedded energy generation.
- Comparison with blown wind simulations using the COAST Laboratory's
 new wind generation system
- FOWT fully coupled numerical model and representative design conditions in the Celtic Sea, feeding into SRS3 and 5

Engineering and Physical Sciences Research Council

