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An accurate and efficient dynamic wake model (including turbulence, transport
delay, time-varying mean wind speed and direction, and potentially floating platform
motion) is essential for the design and evaluation of the wind farm control strategy. In
this study, we propose a deep-learning-based wake model which achieves a great

balance between efficiency and accuracy.

We design our Bilateral Convolutional Neural Network (BICNN) based on the following
observations: generally, the basic status of the flow field is contiguous and stable
along the adjacent time steps, while the change of inflow velocity and distributed
control parameters are the main external factors that cause the variations.

Rui Li, Jincheng Zhang, and Xiaowei Zhao. "Dynamic wind farm wake modeling based on a Bilateral

Convolutional Neural Network and high-fidelity LES data." Energy 258 (2022): 124845.
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Although the flow fields generated by the low-fidelity analytical models do
not contain detailed flow features, the general features (such as the yaw
effects and wind speeds) are well captured, which can serve as the prior
information for high-fidelity flow fields.
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In summary, the analytical models can provide the basic status while the
U b g LSSl g AN ;! - numerical models can supply precise details of the flow fields. Therefore, by
-—_ ’ fusing the information from both low-fidelity and high-fidelity models, a
novel wind farm wake model with strong generalizability may be formed
(a) Super-Fidelity Network balancing the accuracy and the efficiency. The Super-Fidelity Network

(ei5Net} (SFNet) is then designed based on the above considerations.

| % 5 | Rui Li, Jincheng Zhang, and Xiaowei Zhao. "Multi-fidelity modeling of wind farm wakes
o — J l l based on a novel super-fidelity network." Energy Conversion and Management 270
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An overview of the super-fidelity Network, (a) network architecture, (b) the o
Feature Extraction Module (FEM), and (c) the Feature Fusion Module (FFM). A e S S —
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The layout of the wave basin experiments (provided by the University
of Plymouth fteam), where WG2, WG5, WG6, WG7 and WGS8
constitute the pentagonal gauge array.
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The structure of the proposed DBNet, where FCLayer means the fully
connected layer and CBR represents the convolutional layer with the
BN operation and the ReLU activation function.
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Existing works for ML-based wave prediction have two maijor limitations, i.e. the
generalization of the model to diverse sea states and the prediction of 3D
waves. In our study, we investigate, for the first time, the phase-resolved real-
time prediction of 3D waves using ML methods for multiple sea states.

The performance of four frequently used machine learning methods, including
GRU, LSTM, MLP and CNN, are investigated and verified for the phase-resolved
forecasting of 3D waves. Moreover, a novel DBNet is proposed to further
enhance the accuracy of ML-based methods which can take advantage of
both MLP and CNN.

Rui Li, Jincheng Zhang, Xiaowei Zhao, Daming Wang, Martyn Hann, and Deborah Greaves.
"Phase-resolved real-time forecasting of three-dimensional ocean waves via machine
learning and wave tank experiments." Applied Energy 348 (2023): 121529.
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