Supergen

Southampton Marine & Maritime Institute

Finding space for offshore wind to support net zero

Dr. Hugo Putuhena University of Southampton, Southampton, UK h.s.putuhena@soton.ac.uk https://www.southampton.ac.uk/iroe

ORE Supergen Hub - Annual Assembly, Plymouth, 24 April 2024

Finding space for offshore wind to support net zero

Net zero targets

Current leased sites [] for offshore wind have used ~3% of space in the UK-EEZ waters
To meet the net zero targets, the space for offshore wind needs to be increased by 2-5x

UK waters are a busy space

70% is not available: leased sites [], area w/ more crowded constraints [], no-go zones [], or too deep or too far []]

34 spatial constraints have been identified

Available space in UK waters

17% of available space will be needed: either in clear water $[\bigcirc]$, area w/less $[\bigcirc]$ or equal $[\bullet]$ crowded constraints

- Most of available UK waters 'deep' (60-227m)
- [**]** needing floating offshore wind

• Some spaces are located in difficult seabed [

Finding space for offshore wind to support net zero

Putuhena H., White D.I., Gourvenec, S.M. & Sturt F. (2023) Finding space for offshore wind to support net zero: A methodology to assess spatial constrains and future scenarios, illustrated by a UK case study. Renewable and

Supergen

Southampton Marine & Maritime Institute

Finding space for offshore wind to support net zero

Dr. Hugo Putuhena University of Southampton, Southampton, UK h.s.putuhena@soton.ac.uk https://www.southampton.ac.uk/iroe

ORE Supergen Hub - Annual Assembly, Plymouth, 24 April 2024

