

Supergen ORE WS5:Dr Abel Arredondo-Galeana

Future ORE systems and concepts

24 April 2024

Phase 2: WS5 Future ORE systems and concepts

□ Power density:

- Recommendations for design of multi-turbine VLFS (UoSt)
- Hybrid and co-location solutions (UoP, UoA)

□ Longevity and Resilience Design Philosophies:

- Innovative cable designs for current and future floating wind designs (UoEx)
- □ Resilient onshore and support infrastructure
 - Recommendations on circular economy supply chain considerations (UoH, UoSt)
 - Manufacture and operation data and prognosis for through-life monitoring (UoH)

□ Power Integration:

- Assessment of impact of increasing OWF penetration on short circuit levels (UoW)
- Control strategies of OWFs enhancing short circuit level of the power grid (UoW)

Phase 2: WS5 Future ORE systems and concepts

Power density test case:

Design of VLFS (hinged raft WEC) coupled to – a 5MW turbine

Objectives:

- Understanding VLFS dynamics subject to wind loading
- Hybrid power generation from wind and wave to supply stable baseline for power generation

Figure 1– Hinged very large floating structure (VLFS) with 5MW NREL wind turbine

Wind wave correlation

University of Strathclyde Engineering