

Intelligent Control for Offshore Wind Energy

Prof Xiaowei Zhao Supergen ORE Hub – Co-Director

Intelligent Control and Smart Energy (ICSE) Research Group University of Warwick

Intelligent Control for Offshore Wind Energy

Core Aims

- Developing machine learning tools to provide data-driven innovations for the operation and control of offshore wind energy systems.
- Enhancing operating efficiency, improving economic profitability, and reducing costs.

Alignments

- WP5: Floating Futures.
- Theme D: Sensing, Control and Electromechanics.
- Theme F: Operations, Management, Maintenance and Safety.

Engineering and Physical Sciences Research Council

Intelligent Wind Farm Control via Deep Reinforcement Learning

- Optimising long-term, farm-level rewards (e.g., maximising the whole farm's generation).
- Data-driven (only require available measurements) and model-free (no analytical models).

Better farm-level power generation than mainstream operation strategies

H Dong, X Zhao, Composite Experience Replay-Based Deep Reinforcement Learning with Application in Wind Farm Control, *IEEE Transactions on Control Systems Technology*, 30, 2022. H Dong, X Zhao, Wind-Farm Power Tracking via Preview-Based Robust Reinforcement Learning, *IEEE Transactions on Industrial Informatics*, 18, 2022.

H Dong, J Zhang, X Zhao, Intelligent Wind Farm Control via Deep Reinforcement Learning and High-Fidelity Simulations, Applied Energy, 292, 2021.

J Xie, H Dong, X Zhao, A Karcanias, Wind Farm Power Generation Control Via Double-Network-Based Deep Reinforcement Learning, *IEEE Transactions on Industrial Informatics*, 18, 2022. H Dong, J Xie and X Zhao, Wind Farm Control Technologies: From classical control to reinforcement learning. *Progress in Energy*, 4, 2022.

H Dong and X Zhao, Data-Driven Wind Farm Control via Multi-Player Deep Reinforcement Learning, *IEEE Transactions on Control Systems Technology*, 2022, under revision.

H Dong and X Zhao, Reinforcement Learning-Based Wind Farm Control: Towards Large Farm Applications via Automatic Grouping and Transfer Learning, *IEEE Transactions on Industrial Informatics*, 2022, under revision.

Engineering and Physical Sciences Research Council

Structural Control of Very Large Floating Structures (VLFS)

- VLFS a promising alternative to traditional floating foundations.
 - " "Multiple turbines one platform" system; One issue in hinged VLFS structural load/vibration.
- Employing TMDs and machine learning for the structural load/vibration suppression of VLFS.

X. Zhang, D. Lu, H. Dong, X. Zhao, F. Brennan, Y. Liang, Vibration Suppression of Multi-Component Floating Structures via Passive TMDs and Bayesian Ascent, *Ocean Engineering* 259, 2022.

H. Dong, X. Zhao, and J. Zhang. Robust Deep Reinforcement Learning with Application in Structural Control of Floating Wind Turbines. *IEEE Transactions on Emerging Topics in Computational Intelligence*, 2022, under revision.

Engineering and Physical Sciences Research Council

Work in other WPs and cross-hub collaborations

Work package 3 (modelling):

Wind farm wake modelling based on machine learning

- R. Li, J. Zhang, X. Zhao, Multi-fidelity modeling of wind farm wakes based on a novel super-fidelity network, *Energy Conversion and Management* 270, 2022.
- R. Li, J. Zhang, X. Zhao, Dynamic Wind Farm Wake Modeling Based on a Bilateral Convolutional Neural Network and High-Fidelity LES Data, *Energy* 258, 2022.
- J. Zhang and X. Zhao, Wind farm wake modeling based on deep convolutional conditional generative adversarial network, Energy 238, 2022.

Work package 4 (design):

Wind and wave prediction based on deep learning

- J. Zhang, X. Zhao, S. Jin, and D. Greaves, Phase-resolved real-time ocean wave prediction with quantified uncertainty based on variational Bayesian machine learning, *Applied Energy* 324, 2022.
- J. Zhang and X. Zhao, Three-dimensional spatiotemporal wind field reconstruction based on physics-informed deep learning, Applied Energy 300, 2021.

Cross-hub collaborations with three other supergen hubs/network+:

- M. Kheshti, X. Zhao, T. Liang, B. Nie, Y. Ding, and D. Greaves, Liquid Air Energy Storage for Ancillary Services in an Integrated Hybrid Renewable System, *Renewable Energy* 199, 2022
- M. Kheshti, S. Lin, X. Zhao, L. Ding, M. Yin, and V. Terzija, Gaussian Distribution-Based Inertial Control of Wind Turbine Generators for Fast Frequency Response in Low Inertia Systems, *IEEE Transactions on Sustainable Energy* 13, 2022
- EPSRC project (Jan 2022 Jan 2025) High efficiency reversible solid oxide cells for the integration of offshore renewable energy using hydrogen.

Engineering and Physical Sciences Research Council

Thank you for your attention.

Prof Xiaowei Zhao Supergen ORE Hub – Co-Director

Intelligent Control and Smart Energy (ICSE) Research Group University of Warwick

