WP3 – Modelling across scales

Aim: Confidence in models from loads through to environment

Device scale – fatigue load prediction and unsteady onset flow synthesis

- Benchmarking experiment and actuator model development

Array-scale – in-wake & in-array onset flows and loading

- Characterisation of in-array flows and model assessment

Meso-scale – array parameterisation in meso-scale models - Analysis of turbulence production and assessment of methods for representing arrays to model intra-array effects.

Regional scale models of population dynamics

- Improved understanding of animal interactions with velocity & turbulence linked into ecosystem scale models using Bayesian networks

WP3 – Modelling across scales

Device Scale through to Array Scale

Confidence in load prediction in turbulence & waves Wake & in-wake load predictions by alternative fidelity models Predictability of bird and fish use of velocity and turbulence.

Array Scale through to Meso-Scale

Development and assessment of turbine parameterisations for wake extent and intra-farm impacts.

Predictability of population level changes in different habitats throughout whole ecosystems

NIVERSITY

Future Challenges:

Superge

- Validation / benchmarking for array-scale wakes

Offshore

Renewable

- Micro-meso-scale coupling for ecological modelling

The University of Mancheste

1000 km

Flex & ECR projects related to modelling

Flow measurement for accurate tidal turbine design. A. Young, Uni. Bath LoadTide – Fatigue assessment of tidal turbine blades, J. Steynor, Uni. Edinburgh Wave Turbulence Interaction and

Measurement for Tidal Stream,

A. Williams, Uni. Swansea.

Veers' extension to non-neutral incoming

winds (VENTI). M. Placidi, Uni. Surrey

V-SCORES (Validating Surface Currents at Offshore Renewable Energy Sites). B. Williamson, Uni. Highlands and Islands

FORTUNE: Floating Offshore Wind Turbine Noise.

D. Risch, Scottish Association of Marine Sciences **FASTWATER: Freely-Available mesoScale simulation Tool for Wave, Tides and Eddy Replication**. B. Sellar, University of Edinburgh

Novel adaptions of conventional approaches to record seabird behaviour and fish communities in tidal stream environments. J. Waggitt, Bangor Uni.

Proving a robust approach to assess bio-physical interactions with floating tidal turbines. L. Lieber, QUB.

Anisotropic blockage for tidal turbines (AnisoTide),

J. McNaughton, U. Oxford.

Complex fluid dynamics involved in tidal and wind farms. P. Ouro, Uni. Manchester

WP3 – Unsteady Tidal Turbine Benchmarking Project

Rationale:

Unsteady loading and the inability to confidently predict unsteady loading and / or quantify errors drives unnecessary redundancy and design conservatism

Objectives

- *improve accuracy* of modelling techniques,
- improve confidence in the use of modelling techniques,
- quantify modelling errors for different techniques under different loading scenarios,
- development of novel measurement techniques.

Approach

- Conduct a *large laboratory test* of a highly • instrumented tidal turbine in waves and turbulent current to provide underlying data,
- Conduct a series of community wide (academia and • industry) blind prediction exercises with staged data release, leading to an open access dataset

Superge

Engineering and Physical Sciences Research Council

WP3 – Instrumented Test Turbine

Energy

- 3 instrumented blades (2 with strain ٠ gauges, 1 with Fibre Bragg) at six radial locations in both edge and flap directions. Total of 100 strain gauges.
- Torque and Thrust measured by shaft ٠ mounted transducer upstream of front bearing.
- Motor and encoder on high speed side. •

OF HULL

1.6m

2.4m

Instrumented Blade

Engineering and Physical Sciences Research Council

WP3 – Timeline and Participation

WP3 – Turbine data

Example: Impact of grid turbulence on flapwise loads.

FW Station: 5

Clean

Grid

 $f^{-11/3}$

FW Station: 4

Clean

 $f^{-11/3}$

Grid

- Unsteady Loading Data Set
- Unique data set with time series variation of in-blade loads in current and head waves.

FW Station: 1

Clean Grid

 $f^{-11/3}$

FW Station: 3

- Clean

Grid

 $f^{-11/3}$