EPSRC Marine Wave Energy Programme New Generation Modelling Suite for the Survivability of Wave Energy Convertors in Marine Environments (WavE-Suite)

Outline

Qingwei Ma email: q.ma@city.ac.uk

Imperial College London

Research Team

Research teams			
Investogators			
Title	Name	Role in the project	Organisation
Prof.	Qingwei Ma (QM)	PI, overall management of project	City, University of London
Dr.	Shiqiang Yan	Co-I, leading WP1 and 5	City, University of London
Prof.	Vengatesan Venugopal	Co-I, leading WP4	University of Edinburgh
Prof.	Christopher Pain	Co-I, co-leading WP2 and WP1	Imperial College London
Dr.	Rossella Arcucci	Co-I, leading WP2	Imperial College London
Dr	Jun Zang	Co-I, leading WP3	University of Bath
Dr.	Zhihua Xie	Co-I, co-leading WP3 and WP5	University of Cardiff
Dr.	David Pizer	Project Advisor	Consultant Scientist
Researchers			
Dr.	César Quilodrán Casas	Named researcher	Imperial College London
Dr.	Haoyu Ding	Researcher	University of Bath
Dr.	John Samuel	Researcher	University of Edinburgh
Dr.	Qian Li	Researcher	City, University of London
Dr.	Aristos Christou	Researcher	University of Cardiff

Advisory Board

Advisory Board	for WavE-Suite			
Title	Name	Role in the board	Expertise	Organisation
Dr. and FREng	RV Ahilan	Chair and partner member	hydrodynamics and, offs	AqualisBraemar LOC
Dr.	Chris Retzler	Partner member	Wave energy;	Mocean Energy Ltd
Dr.	Jørgen Hals Todalshaug	Partner member	Wave energy;	CorPower Ocean
Dr.	Yago Torre-Enciso	Partner member	Wave energy;	BiMEP
Dr.	Jon Lekube Garagarza	Partner member	Wave energy;	BiMEP
Prof.	Decheng Wan	Partner member	Numerical modelling	Shanghai Jiaotong Univ
Dr.	Songwei Sheng	Partner member	Wave energy;	Guangzhou Institute of Energy Conversion
Dr.	V Sriram	Partner member	Hydrodynamics and num	IIT Madras
Dr.	Hakim Mouslim	Partner member	Offshore renewable ener	INNOSEA with ABL LOC
Prof. and FREng	Alistair BORTHWICK	invited member	Hydrodynamics and num	University of Edinburgh
Prof.	Andrew Moore	invited member	Data Assimilation and o	University of California Santa Cruz
Prof.	Paul Taylor	invited member	Wave dynamics and appl	University of West Australia
Prof.	Nigel Barltrop	invited member	Offshore engineering	university of Strathclyde

State-of-Art Numerical tool for modelling WECs

The momentum for developing wave energy is quite strong. The programme funded by EPSRC (about £8m); and

One of key challenges for the sector: lack of accurate and efficient numerical tool for assessing survivability of WECs

State-of-Art Numerical tool for modelling WECs

- Nonlinearity, wave breaking and turbulence play important roles for WECs survivability.
- Long duration and large spatial domain modelling required to provide reliable extreme loading and motion events.
- Turbulence in breaking waves is a huge challenge as the existing turbulent models are not suitable for many breakingwaves cases and modelling it is very costing.
- Existing models are either too simple and inaccurate or too computationally expensive.

Model	Theory	Examples	Main features	Capability for WECs in survival waves	Comp. costs
ential	Linear and/or weak nonlinear	WEC-slim	Linear or second order for waves, hydrodynamics and body motions; artificial viscosity	No strong nonlinearity	+
Pot	Fully nonlinear potential	QALE-FEM*	Waves/current, multibody hydrodynamics and motions; artificial viscosity	fully nonlinear but not breaking waves/viscosity	++
NS (CFD or high fidelity)	Navier- Stokes equation	OpenFOAM, Star-CCM+, Fluidity*, SPH*, PIC*, Xdolphin3D*	1 or 2-phases, breaking waves, viscosity, restricting to a small region near the structures with prescribed linear/2 nd order wave inlets; not widely used for random waves	Resolve physical details, run in small domain; numerical dissemination if run in large domain or long duration;	+++++
MMS (hybrid)	Combined theories	qaleFOAM*, OceanWave3D/ OpenFOAM or SPH	Potential model in large domain, 2-phases/breaking waves/viscosity in small domain near the structures	Deal with wave breaking, turbulence and viscosity, two-phase flow and less numerical damping	+++

Fig. 1. Numerical models (+: order of computing costs; * developed by team members)

Objectives - What do we plan to achieve

Main Objectives:

- Develop a new numerical modelling suite (WavE-Suite) equipped with advanced machine leaning algorithms by coupling five individual numerical models that are suitable for physics of different scales and nature, supported by dedicated databases, which is efficient and accurate enough.
- Realise that WavE-Suite has the ability to deal with irregular waves together with current and to simultaneously capture both large and small-scale physics.
- Validate the WavE-Suite by bespoke experiments and sea trial data.
- Demonstrate WavE-Suite to be able to identify the survival conditions and quantify extreme loads and motions of WECs

Features of WavE-Suite - 01

Multimodel multiscale simulation(MMS) principle:

- Two-phase NS models only run at very violent cases for quantifying flow details in smaller domain around WECs;
- Single phase NS model used as alternatives;
- Nonlinear wave fields with current simulated by potential models (QALE-FEM and/or ESBI);
- Regional wave spectrum evolution modelled by phased averaged models.
- Different coupling approaches adopted

Features of WavE-Suite - 02

Nature and flexibility:

- All models built in;
- Automatically selected using the information for input and tasks;
- Accept global weather forecast;
- Accept measured sea state;
- Also accept spectra specified or lab conditions;
- Full range of survival analysis tasks: identifying the survival conditions; quantifying extreme loading and responses and characterise the pressure and velocity field.

Fig. 2. Compliant and a band and a f MMO and a letting a suite

Workpackages - How do we do this

- WP1: MMS modelling software for analysing survivability of WECs
- WP2: ML Algorithms for estimating turbulent effects on WECs
- WP3: Databases and repository for WECs in high sea states
- WP4: Tailored model tests on WECs in survival conditions
- WP5: Validation of WavE-Suite and characterisation of survivability

Timeline - when we will achieve them

		Ye	ar 1			Ye	ar 2		Year 3			Milestones and PDRA allocations	
	1	2	3	4	1	2	3	4	1	2	3	4	(PDRA time is given in months (m))
WP1	i: M	MS	Wav	E-Si	uite f	or ar	halys	sing	surv	ivabi	lity c	of	M1: Couple ESBI with QALE-FEM; M2:
WEO	Cs												Couple QALE-FEM with INS and create
1.1	M1			M2									the UnifWSI; M3: Couple UnifWSI with
1.2								M3					NS2P; M4: Couple ESBI with SWAN; M5:
1.3		M4											Develop algorithm for auto-switch models
1.4												M5	(PDRA1 7-33 m; CUL PhD student)
WP2	2: N	1L al	gorit	hms	for e	estim	ating	g tur	bule	nt eff	fects	on	M6: ML-damping, merged into QALE-
WEO	Cs												FEM in M1; M7: ML-eddyV, merged into
2.1		M6											INS in M2; M8: ML-Rstress, merged into
2.2					M7							ļ	NS2P in M3; M9: Refined ML algorithms
2.3								M8					and guideline for extending ML-damping
2.4												M9	(<i>PDRA2</i> 1-36 m 40%)
WP3	<u>3: Da</u>	taba	se 8	rep	osito	ry fo	r W	ECs	in hi	gh s	ea si	tates	M10: Database (DB) of eddy viscosity for
3.1				M10									M7; M11: DB of Reynolds stress for M8;
3.2						M11							M12: DB on viscos damping for M6; M13:
3.3						M12							Repository for survivability of WECs
3.4												M13	(<i>PDRA3</i> 1-12 m; <i>PDRA4</i> 7-18 m)
WP4	l: Ta	ilore	d mo	del	tests	on \	WEC	Cs in	surv	vival			M14: Model test for OWC; M15: Model
cond	lition	is (D	ashe	ed: to	be be	done	e by	IIT N	/ladra	as)			test for point absorbers; M16: Model test
4.1			M14										for attenuator WEC; M17: Scaling effects
4.2					M15	M17							on point absorber (PDRA5 13-24 m, In-
4.3							M16						kind contribution by IIT Madras)
WP	5: Va	alida	tion	of th	e nu	meri	cal s	suite	and				M17: Validated WavE-Suite; M18:
char	acte	risati	ion o	f su	viva	bility	of t	ypica	al WE	ECs			Survival condition of single WEC; M19:
5.1								M17					Survival condition for a WEC array; M20:
5.2			M18							M19			Quantified extreme loading/responses of
5.3												M20	WECs; M21 : Characterised flow field for
5.4												M21	WECs(PDRA1 7-33 m, CUL PhD student)
	+		+*		+		+		+		+	*	Project meeting +; Workshops *

- Last for 36 months
- Clear defined milestones for each WP, corresponding to deliverables
- Project meeting and/or workshops every 6 months;
- Project partners play important role;
- Advice and suggestions from all advisory board members are welcome

Progresses made so far

- WP1 (a) large area field modelling; (b) Coupling QALE-FEM with single phase NS to form UnifWSI; (c) Coupling UnifWSI with two-phase NS (galeFOAM)
- WP2 (a) Machine learning algorithm for predicting the turbulent dynamic viscosity (b) Case study on turbulent dynamic viscosity around a point absorber
- ♦WP3 Data base for point absorber