EPSRC Marine Wave Energy Programme

New Generation Modelling Suite for the Survivability of Wave Energy Convertors in Marine Environments (WavE-Suite)

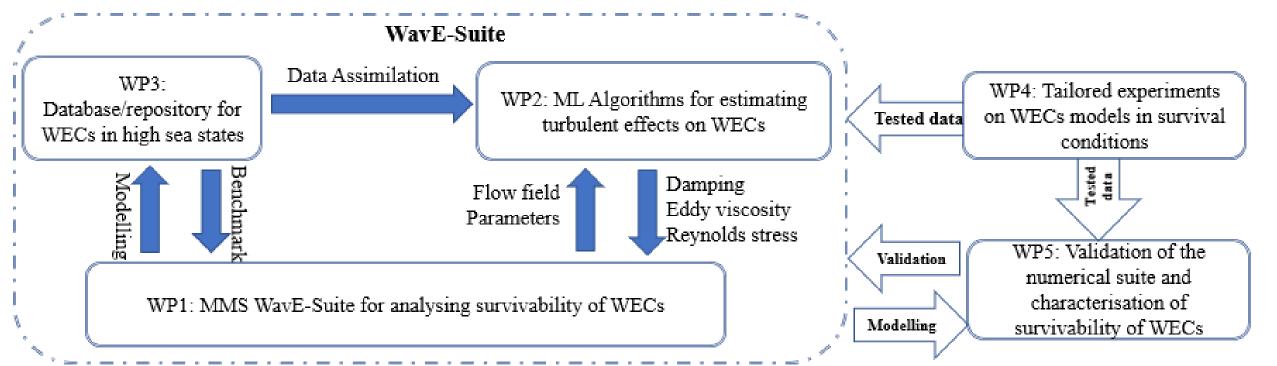
for Supergen ORE Hub Assembly Jan 2022

Research Team

Investogators				
Title	Name	Role in the project	Organisation	
Prof.	Qingwei Ma (QM)	PI, overall management of project	City, University of Londo	
Dr.	Shiqiang Yan	Co-I, leading WP1 and 5	City, University of Londo	
Prof.	Vengatesan Venugopal	Co-I, leading WP4	University of Edinburgh	
Prof.	Christopher Pain	Co-I, co-leading WP2 and WP1	Imperial College London	
Dr.	Rossella Arcucci	Co-I, leading WP2	Imperial College London	
Dr	Jun Zang	Co-I, leading WP3	University of Bath	
Dr.	Zhihua Xie	Co-I, co-leading WP3 and WP5	University of Cardiff	
Dr. David Pizer		Project Advisor	Consultant Scientist	
Researchers				
Dr. César Quilodrán Casas		Named researcher	Imperial College London	
Dr.	Haoyu Ding	Researcher	University of Bath	
Dr.	Roman Gabl	Researcher	University of Edinburgh	

Advisory Board

Advisory Board f	or WavE-Suite			
Title	Name	Role in the board	Expertise	Organisation
Dr. and FREng	RV Ahilan	Chair and partner member	hydrodynamics and, offs	AqualisBraemar LOC
Dr.	Chris Retzler	Partner member	Wave energy;	Mocean Energy Ltd
Dr.	Jørgen Hals Todalshaug	Partner member	Wave energy;	CorPower Ocean
Dr.	Yago Torre-Enciso	Partner member	Wave energy;	BIMEP
Dr.	Jon Lekube Garagarza	Partner member	Wave energy;	BIMEP
Prof.	Decheng Wan	Partner member	Numerical modelling	Shanghai Jiaotong Univ
Dr.	Songwei Sheng	Partner member	Wave energy;	Guangzhou Institute of Energy Conversion
Dr.	V Sriram	Partner member	Hydrodynamics and num	IIT Madras
Dr.	Hakim Mouslim	Partner member	Offshore renewable ener	INNOSEA with ABL LOC
Prof. and FREng	Alistair BORTHWICK	invited member	Hydrodynamics and num	University of Edinburgh
Prof.	Andrew Moore	invited member	Data Assimilation and o	University of California Santa Cruz
Prof.	Paul Taylor	invited member	Wave dynamics and appl	University of West Australia
Prof.	Nigel Barltrop	invited member	Offshore engineering	university of Strathclyde


Objectives

Main Objectives:

- Develop a new numerical modelling suite (WavE-Suite) equipped with advanced machine leaning algorithms by coupling five individual numerical models that are suitable for physics of different scales and nature, supported by dedicated databases.
- Realise that WavE-Suite has the ability to deal with irregular waves together with current and to simultaneously capture both large and small-scale physics.
- Validate the WavE-Suite by bespoke experiments and sea trial data.
- Demonstrate WavE-Suite to be able to identify the survival conditions and quantify extreme loads and motions of WECs

Workpackages

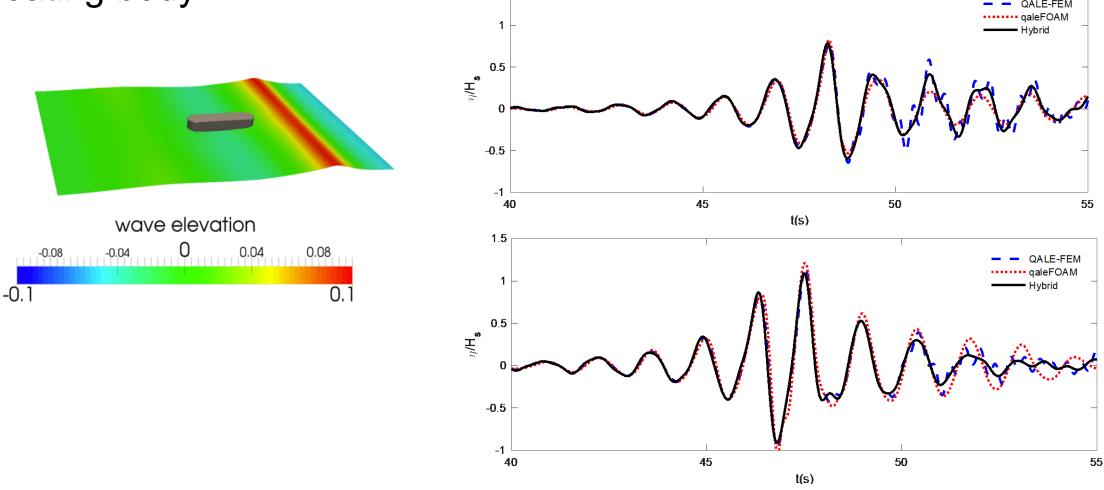
- WP1: MMS modelling software for analysing survivability of WECs
- WP2: ML Algorithms for estimating turbulent effects on WECs
- WP3: Databases and repository for WECs in high sea states
- WP4: Tailored model tests on WECs in survival conditions
- WP5: Validation of WavE-Suite and characterisation of survivability

Work Plan

		Ye	ar 1			Ye	ar 2		Year 3			Milestones and PDRA allocations	
	1	2	3	4	1	2	3	4	1	2	3	4	(PDRA time is given in months (m))
WP1	: M	MS	Wav	E-Si	uite f	or ar	halys	sing	survi	vabi	lity c	of	M1: Couple ESBI with QALE-FEM; M2:
WE	Cs										_		Couple QALE-FEM with INS and create
1.1	M1			M2									the UnifWSI; M3: Couple UnifWSI with
1.2								M3					NS2P; M4: Couple ESBI with SWAN; M5:
1.3		M4											Develop algorithm for auto-switch models
1.4												M5	(PDRA1 7-33 m; CUL PhD student)
WP2		IL alg	gorith	nms	for e	stim	ating	g turl	buler	nt eff	ects	on	M6: ML-damping, merged into QALE-
WE	Cs												FEM in M1; M7: ML-eddyV, merged into
2.1		M6											INS in M2; M8: ML-Rstress, merged into
2.2					M7							ļ	NS2P in M3; M9: Refined ML algorithms
2.3								M8					and guideline for extending ML-damping
2.4												M9	(PDRA2 1-36 m 40%)
	3: Da	taba		_	osito	ry fo	or WI	ECs	in hi	gh se	ea st	tates	
3.1				M10									M7; M11: DB of Reynolds stress for M8;
3.2						M11	<u> </u>						M12: DB on viscos damping for M6; M13:
3.3						M12							Repository for survivability of WECs
3.4												M13	
	: Tai												M14: Model test for OWC; M15: Model
	lition			ed: to	be	done	e by	IIT N	ladra	as)			test for point absorbers; M16: Model test
4.1			M14										for attenuator WEC; M17: Scaling effects
4.2					M15	M17							on point absorber (PDRA5 13-24 m, In-
4.3							M16						kind contribution by IIT Madras)
	5: Va									_			M17: Validated WavE-Suite; M18:
	acte	risati	on o	f sur	viva	bility	of ty	/pica	al WE	Cs			Survival condition of single WEC; M19:
5.1								M17					Survival condition for a WEC array; M20:
5.2			M18							M19			Quantified extreme loading/responses of
5.3												M20	WECs; M21 : Characterised flow field for
5.4												M21	WECs(PDRA1 7-33 m, CUL PhD student)
	+		+*		+		+		+		+	*	Project meeting +; Workshops *

- Last for 36 months
- Clear defined milestones for each WP, corresponding to deliverables
- Project meeting and/or workshops every 6 months;
- Project partners play important role;
- Advice and suggestions from all advisory board members are welcome

WP1: MMS modelling software for analysing survivability of WECs


Develop the unified one-phase model for wave-WEC interaction (UnifWSI)

UnifWSI – phase 1

- ✓ Coupling the QALE-FEM (potential model) with single-phase FEM based NS model
- ✓ Splitting the viscous force through the Projection-based method (fractional step method)
- ✓No need to exchange data between solvers
- ✓No need to decompose the computational domain

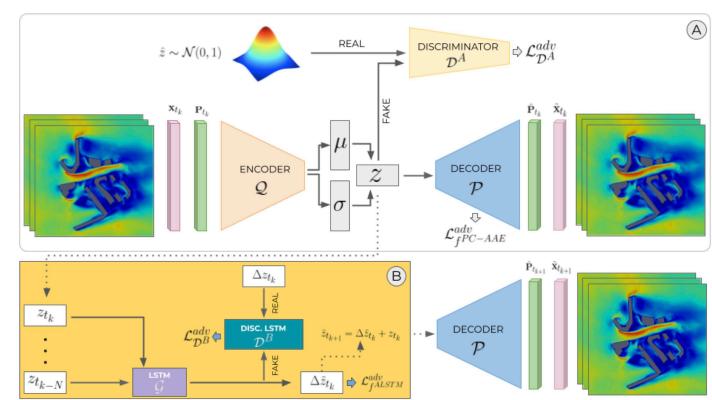
WP1: MMS modelling software for analysing survivability of WECs

Preliminary results - model the interaction between focusing waves and floating body

Suspicious high-frequency oscillation supressed in the UnifWSI modelling

WP2: ML Algorithms for estimating turbulent effects on WECs

Methodology for learning turbulent viscosity


Two-step PC-based adversarial autoencoder (PC-AAE)

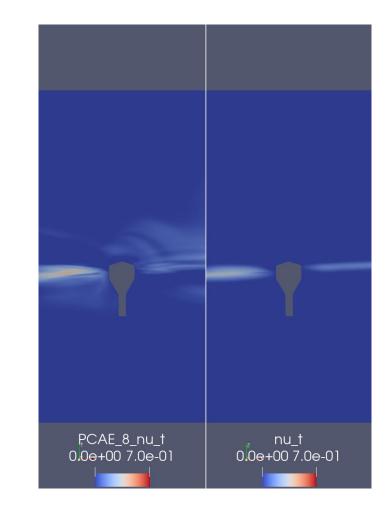
Using the input of the unstructured mesh points to achieve first model reduction.

Through the PC-AAE, obtain a latent space representation of the full PC field (second model reduction)

Ensuring that the latent space matches a normal distribution by AAE

Compression of data in Encoder

WP2: ML Algorithms for estimating turbulent effects on WECs

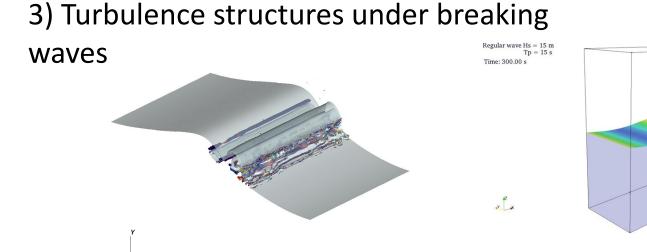

Preliminary results for compression method

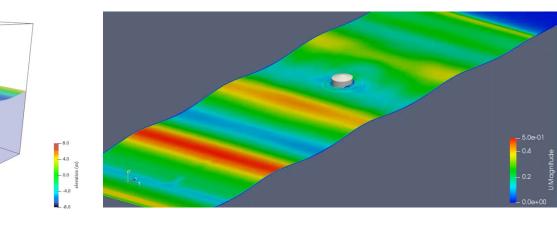
PC-AAE compression method developed.

Comparison of viscosity fields obtained by the compression method and original data

Left image: using only 8 dimensions Right image: the initial ~800k points

Better representation of data with more compression dimensions.


WP3: Databases and repository for WECs in high sea states


Start to generate database in the following cases

1) Regular wave interaction with a point absorber

2) NewWave interaction with a point absorber

Kinematic viscosity y=0 y=-2.1 = -0.25D y=0 y=-2.1 = -0.25D y=-2.1 = -0.25Dy=-2.1 = -0.25D

Summary

- Three months after the start;
- Some progress in WP 1, 2 and 3, following the work plan
- WP1 developed Phase 1 UnifWSI
- WP2 developed PC-AAE compression method for dealing data efficiently.
- WP3 Generated initial results for one WECs and for breaking waves