

EPSRC Marine Wave Energy Programme

Bionic Adaptive Stretchable Materials for WEC (BASM-WEC)

Qing Xiao (PI), Sandy Day, Feargal Brennan, Saeid Lotfian Department of Naval Architecture, Ocean and Marine Engineering Liu Yang Department of Mechanical and Aerospace Engineering

> Iain Bomphray Lightweight Manufacturing Centre

Engineering and Physical Sciences Research Council

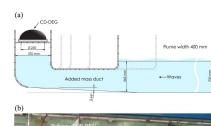
1

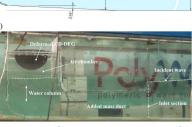
University of Strathclyde, UK

Flexible Materials in WECs

Steels	Backbone (frame) Articulation	Composites				
PWP - Rigid	Shell Submersible Buoyancy	Mooring				
E DIT	Logistics costs J: Modular Building					
Anaconda - Flexible	Load Shedding ↑: Elastomers have demonstrate advantage in load shedding	Joins ↓: Less joins keeping degrees of freedom (survivability)				
	Device mass ↓: Elastomers and composites have a considerable low density.	Complex shapes ↑: Polymers and Elastomers can be manufacturing in different shapes				
	Buoyancy ↑: Foam sandwich composit	es can be interpreted in the structure				

Flexible Materials in WECs




Marine environments are challenging and dynamic contexts for buildings. Structures should support hurricanes and highenergy storms with continual wetting and drying environment with salt-saturated water and intense solar radiation. Elastomers have different benefits including **high elongation**, **damping coefficient** and **fatigue life** which contribute to survivability. However, elastomers suffer from **reduced fatigue and tensile strength and low stiffness**. In BASM-WEC, selected materials will be fully characterised under dynamic and quasi-static loads considering environmental conditions.

Membrane

Air bag (A. Kurniawan et al., 2016)

PolyWEC (G. Moretti et al. 2018)

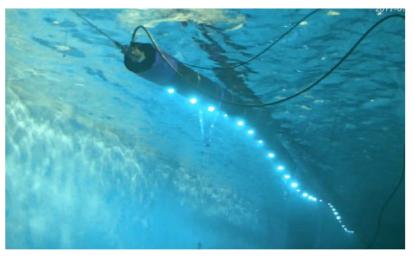
- Wide data available including numerical and analytical models and experimental results
- Less complex shape and phenomena involved
- Easy manufacture

SBM S3 WEC (Collins et al., 2021)

Anaconda (Collins et al., 2021)

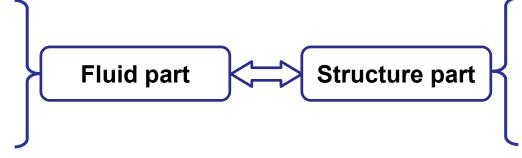
- Modular configuration, easy to upscaling
- SBM Offshore S3 is using this configuration (our project partner)
- Higher absorbed power
- Easy manufacture, load out and installation
- Highly redundant both mechanically and electrically
- Distributed redundant PTO provides a step change improvement in the energy production potential

- Increasing the size of the device could produce other behaviours like buckling
- It is necessary to limit the strain to avoid reaching failure of the material
- ✓ Less absorbed power
- It is more difficult to upscaling (modular way)


- Less data available numerical, analytical and experimental results (more opportunities)
- ✓ More complex phenomena involved
- Larger loading may lead to more serious fatigue loading
- Power generation efficiency is affected by the wave direction

The most appropriate case for flexible WEC study

Flexible tube WEC (SBM S3)


- SBM S3: merging the primary mover and the PTO function into the WEC structure.
- ✓ The flexible materials that make up the WEC hull have complex structural features, making the development of new materials of great significance.
- Most FSI problems experienced by flexible WECs can be found in SBM S3, i.e., two-phase flow, 6DoF motions, inner and outer flows, mooring dynamics, etc.

SBM S3 WEC (Collins et al., 2021)

Fluid-structure interaction

- ✓ Inner and outer flows
- ✓ Two-phase flow
- ✓ Irregular wave conditions
- ✓ 6DoF motion
- ✓ Mooring system

- Composite material
- Material flexibility
- Stress and strain
- Structural deformation

Collins I, Hossain M, Dettmer W, et al. Flexible membrane structures for wave energy harvesting: A review of the developments, materials and computational modelling approaches[J]. Renewable and Sustainable Energy Reviews, 2021, 151: 111478.

Material consideration

- ✓ Dynamic and quasi-static loads
 L considering environmental conditions
- Hurricanes and high-energy storms with continual wetting and drying environment with salt-saturated water and intense solar radiation.

WORKPLAN·2022													
	1	2	3	4	5	6	7	8	9	10	11	12	
Literature·Review							D2						
_{S.} Op.·Requirements		M1						M4					
Material ·Assessment				D1					D3				
MWS·Modelling					N	12						M5	
MS ·Integration							M3						
Material·Modelling										D4			
Standard·Tests													
Saltwater·Tests												D5	

Notes:·1.·Material-Wave-Structure·(MWS),·2.·MS·(Material-Structure).

- Milestone 1 (M1): First Identification of operational conditions and mechanical and environmental requirements
- Milestone 2 (M2): Properties requirements and CFD model verification
- > Milestone 3 (M3): First Material and structure performance analysis
- Milestone 4 (M4): Second Identification of operational conditions and mechanical and environmental requirements
- Milestone 5 (M5): CFD model verification

- Deliverable 1 (D1): Comprehensive datasheet for material selection
- > Deliverable 2 (D2): Paper of material review in WECs
- Deliverable 3 (D3): Technical report including material assessment based on results and material selection
- > Deliverable 4 (D4): First version of material model
- > Deliverable 5 (D5): First Material characterisation report

Thank You !

Contact details: Dr. Qing Xiao Reader Naval Architecture, Ocean and Marine Engineering University of Strathclyde

Tel: +44(0)141 548 4779 Email: <u>qing.xiao@strath.ac.uk</u>

Website: <u>http://personal.strath.ac.uk/qing.xiao/</u> <u>https://www.cfd-fsi-xiao.org/</u>