

Offshore Renewable Energy

Panel session 1: Unlocking growth targets

What changes are needed within policy and practice to enable targets for 2030 and beyond to be achieved within the context of ORE? And what is the role of the Supergen ORE Hub

www.supergen-ore.net | #SupergenORE23

Keynote Speakers

Caitlin Byers - Development Manager (Integration & Transition) - Crown Estate Scotland

Henry Jeffrey - Co-Director of the Supergen ORE Hub and Head of Policy Unit, University of Edinburgh

Achieving targets and unlocking lasting value for Scotland

Who are we? What do we do?

- We manage property including buildings, land, coastline and seabed on behalf of the people of Scotland.
- Our purpose is to invest in property, natural resources and people to generate lasting value for Scotland.

Our Portfolio

Building the blue economy

- Offshore renewables
- Ports & harbours
- Local energy systems
- Transmission
- Carbon capture & storage
- Telecommunications
- Marine tourism
- Sustainable aquaculture

Our key role in offshore renewables

Our responsibilities include:

- Leasing of the seabed out to 12 nautical miles (cables and pipelines, aquaculture)
- The rights to offshore renewable energy and gas and carbon storage out to 200 nautical miles
- Marine Directorate (previously Marine Scotland) are responsible for strategic marine planning and grant consents for projects.
- Crown Estate Scotland award Option Agreements or Agreements for Lease which secure the right to investigate the site.
- Crown Estate Scotland only grants a Lease once necessary consents and permissions are in place.

ScotWind

- Plan led process Marine Scotland's Sectoral Marine Plan (SMP) for Offshore Wind
- 20 ScotWind projects with 8000km² of seabed secured (from 74 bids)
- £755m Option Fees for Scottish Public spending
- £1.4bn average Scottish supply chain commitment per project
- Builds on existing pipeline of 8 projects in construction and development
- Over 40GW of potential offshore capacity now visible in Scotland

Innovation and Targeted Oil and Gas (INTOG) leasing

Objectives for Innovation Projects (<100MW):

- To enable projects which support cost reduction
- To further develop Scotland as a destination for innovation and technical development

Objectives for Targeted Oil and Gas Projects:

- To maximise the role of offshore wind to reduce emissions from O&G production
- To achieve target installed capacity in a way that delivers best value for Scotland and supply chain opportunity

INTOG Results

13 Projects offered Exclusivity Agreements:

5 Innovation Projects

- 449MW awarded
- Area of seabed 139km²

8 TOG Projects

- 4.96GW awarded
- Area of seabed 1535km²

Wave and tidal

- Over 480 MW of wave and tidal energy sites with seabed agreements
- Currently operating an open ad-hoc leasing process:
 - Up to 3MW for test and demonstration
 - 3 30MW where there is sufficient evidence of energy yield from selected technology
- Our role also extends to:
 - Funding research and technical studies to enable sector growth
 - Investing in ground breaking projects
- Market engagement survey due to commence shortly

Opportunities and challenges ahead

- Three key areas due to scale:
 - Grid (HND & HND FUE)
 - Consenting
 - Building supply chain
- Collaboration is a buzzword but we need to translate this into practical early engagement and successful combined project development and delivery
- Cross-sector working essential on innovating market design, progressing significant technical and skills challenges

Collaboration, cooperation and colocation

- Growth and demand
 - Meeting Net Zero targets
 - Pace and timing
 - Increasing seabed demands
 - Marine protection
 - Natural capital
 - Economic activity
- Collaboration and cooperation
 - Understanding other sectors and their needs
 - Communication on shared space and willingness to work together
 - Innovation to create colocation opportunities

Thank you www.crownestatescotland.com

Policy and Innovation Group

Marine Renewable Energy

Benefits and Importance of Continued and Consistent Support

The Policy Makers Tool Box

Henry Jeffrey Annual Assembly July 2023

THE UNIVERSITY of EDINBURGH School of Engineering

Analysis and Reports

Deployment **Economic Benefit** Systems Benefit Value of Innovation Areas of Innovation Modelling (GVA) Supergen 🛞 🕬 Supergen 🛞 Officience Supergen 🛞 🚎 Supergen (R) Offshore Ocean Energy and Net Zero: **Research and Innovation** Delivering Net Zero: Policy Support for the for Wave and Tidal Stream Achieving the Deployment of What is the value of innovative What are the UK power system Cost Effective Delivery of 12GW of Wave and Tidal Stream offshore renewable energy in the UK and EU benefits from deployments of wave in UK Waters by 2050 deployment to the UK economy? 12GW Wave and Tidal Stream by 2050 and tidal stream generation? A 2023 Summary A Supergen Offshore Renewable Energy Hub Policy Paper prepared by the Policy and innovation Group at the University of Edinburgh. A Supergen Offshore Renewable Energy Hub Policy Paper prepared by the Policy and Innovation Group at the University of Edinburgh A Supergen Offshore Renewable Energy Hub Policy Paper prepared by the Policy and Innovation Group at the University of Edinburgh. A Supergen Offshore Renewable Energy Hub Policy Paper prepared by the Policy and Innovation Group at the University of Edinburgh. A Supergen Offstore Renewable Energy Hub Policy Paper prepared by the **Policy and Incovation Group** June 2023 niemativ of Edinburgh June 2023 School of Engineering THE UNITART / TONK INC. School of Engineering EERA School of Engineering **(** Engineering and Physical Ectences Research Council Policy and Innovation Grou Policy and innevation Group Engineering and Physical Sciences Research Council Buginessing and Parallel Balancies Balancerth Coursel CEONSET Keytneering and Physical Sciences Research Council Policy and Innovation Group Policy and Innovation Group Policy and Innovation Group

Deployment Modelling

THE UNIVERSITY / EDINBUE School of Engineering

Policy and Innovation Group

How much wave and tidal could be installed by 2050?

THE UNIVERSITY of EDINBURGH School of Engineering

Policy and Innovation Group

Engineering and Physical Eclanova Research Council

Economic Benefit (GVA)

Policy and Innovation Group

GVA Benefits:

- £4.9B £8.9B from UK deployments
- £6.4B £32.1B from International deployments

Great Just Transition argument !

What is the value of innovative offshore renewable energy deployment to the UK economy?

Supergen Offstore Renewable Energy Hub skoy Paper prepared by the Policy and Issovation Group the University of Edinburgh

THE UNIVERSITY of EDINBURGH School of Engineering

System Benefit

benefits from deployments of wave

Engineering and Physical Sciences Research Council

and tidal stream generation?

THE UNIVERSITY / EDINBUR

Policy and Innovation Group

System benefits in 2050:

- £1.03B annual reduction in cost of dispatch ٠
- 300 GWh reduction in fossil fuel dispatch ۲

An enabler of offshore wind ! ۲

THE UNIVERSITY of EDINBURGH School of Engineering

Five reports

Policy and Innovation Group

Existing Underpinning

Market Pull and Tech Push Policy Analysis

Policy and Innovation Group

Ocean Energy and Net Zero: Policy Support for the Cost Effective Delivery of 12GW Wave and Tidal Stream by 2050

A Supergen Offshore Renewable Energy Hub Policy Paper prepared by the Policy and innovation Group at the University of Edinburgh.

June 2023

What is the least cost option to deliver 6GW of wave + 6GW of tidal stream by 2050?

- Technology Push Funding Analysis
- Market Pull Funding Analysis

THE UNIVERSITY of EDINBURGH School of Engineering

Existing Polices – Technology Push (Wave & Tidal Stream)

Policy and Innovation Group

Between 2017-2022

Total funding in UK: **£315 Million**

- Total Funding from EU: **£241 Million**
 - Total Funding from UK: **£74 Million**

THE UNIVERSITY of EDINBURGH

10

Existing Polices – Technology Push (Wave & Tidal Stream)

Supergen in Contraction Supergen

Policy and Innovation Group

Between 2017-2022

Total Domestic Funding: **£74M**

- Total Funding from Scottish Govt.: **£44M**
 - Total Funding for H.E. Guarantee: **£4.8M**
 - Total Funding from UK Govt.: **£25.2M**
 - EPSRC: **£18.4M**
 - Innovate UK: £3.6M
 - Energy Entrepreneurs Fund: £2M
 - Others: £1M

Future Scenario Analysis – Market Pull

Policy and Innovation Group

CfD mechanism

• Tidal Stream

From 2022 (CfD4 - Strike Price £178.54/MWh)

- Wave (Assumption)
 - From 2027 (CfD9 Strike Price £178.54/MWh)

Market Pull – Future Scenario Analysis (Tidal Stream)

Politav and Innovation Group

Offshore Renewable

Enerav

Supergen

Total Market Pull Investment

- LR 10% Suboptimal £18.6Bn
- LR 15% Preferable £ 3.3Bn
- LR 20% Ambitious £ 1.9Bn

Technology Push investment greatly reduces total Market Pull investment

THE UNIVERSITY of EDINBURGH

Market Pull – Future Scenario Analysis (Wave)

Paliaw and Incoverian Group

Offshore Renewable

Energy

Supergen

Total Market Pull Investment

- LR 10% Suboptimal £20.5Bn
- LR 15% Preferable £ 3.0Bn
- LR 20% Ambitious £ 1.3Bn

Technology Push investment greatly reduces total Market Pull investment

THE UNIVERSITY of EDINBURGH School of Engineering

Market Pull – Future Scenario Analysis

Summary

- Total Market Pull investment is greatly affected by the rate of cost reduction
- Rate of cost reduction is greatly affected by
 - **Technology Push Investment**

Remember High TRL UK - £3.6 million

THE UNIVERSITY of EDINBURGH School of Engineering

Engineering and Psychial Diversion Research Course

Research and Innovation Analysis

Policy and Innovation Group

Research and Innovation for Wave and Tidal Stream in the UK and EU

A 2023 Summary

A Supergen Offshore Renewable Energy Hub Policy Paper prepared by the Policy and Innovation Group at the University of Edinburgh

July 2023

How should UK strategise future R&I funding?

THE UNIVERSITY of EDINBURGH School of Engineering

Demonstration & Innovation Analysis

SRIA Recommendation (Baseline)	
Period	2021-2025
Recommended Budget	664 €m*
Suggested Number of Projects	148*

<u>6 Challenge Areas</u>

- Design and validation of ocean energy devices
- Foundations, Connections and Mooring
- Logistics and Marine Operations
- □ Integration in the Energy System
- Data Collection & Analysis and Modelling Tools
- **Cross-cutting Challenges**

THE UNIVERSITY of EDINBURGH School of Engineering

Policy and Innovation Group

1,006

TOTAL

Research & Innovation Analysis

<u>6 Challenge Areas - 17 Priority Topics</u>

For each priority topic, the SRIA defines:

- Scope
- Applicability (wave, tidal, others)
- Expected impact
- TRL (entry/exit)
- Budget Required (number and size of projects)

	INIVE	Re
I.H.	X	Ě.
ė		Ë
E		18

THE UNIVERSITY of EDINBURGH School of Engineering

Policy and Innovation Group

hallenge Areas	Priority Topics	Number and Size of actions ⁸	Budget Require	ed (million €)
Design and Validation of Ocean Energy Devices	Demonstration of ocean energy devices to increase experience in real sea conditions	Around 10 large and 10 medium	150	700
	Demonstration of ocean energy technology at array scale	7 Projects at array scale	350	
	Improvement and demonstration of PTO and control systems	Around 10 medium and 5 small	60	
	Application of innovative materials from other sectors	A few medium and around 5 small	25	
	Development of novel wave energy devices	Around 10 small and 5 medium	45	
	Improvement of tidal blades and rotor	Around 5 medium and a few large	55	
	Development of other ocean energy technologies	A few medium	15	
Foundations, Connections and Mooring	Advanced mooring and connection systems for floating ocean energy devices	Around 10 medium	50	85
	Improvement and demonstration of foundations and connection systems for bottom-fixed ocean energy devices	Around 5 medium and around 5 small	35	
Logistics and Marine Operations	Optimisation of maritime logistics and operations	Around 5 medium and a few large	55	80
	Instrumentation for condition monitoring and predictive maintenance	A few medium and around 5 small	25	
Integration in the Energy System	Developing and demonstrating near- commercial application of ocean energy in niche markets	Several medium and a few large	80	86
	Quantifying and demonstrating grid- scale benefits of ocean energy	A few small	6	
Data Collection & Analysis and Modelling Tools	Marine observation modelling and forecasting to optimise design and operation of ocean energy devices	A few medium and around 5 small	25	35
	Open-data repository for ocean energy	Around 5 small	10	
Cross-cutting Challenges	Improvement of the environmental and socioeconomic impacts of ocean energy	Around 5 small	10	20
	Standardisation and certification	Around 5 small	10	

Policy and Innovation Group

*Boundary: only includes projects/activities in wave and tidal stream we are aware of that are active within 2022-2025

<u>Current Status – Budget</u>

THE UNIVERSITY of EDINBURGH School of Engineering

SRIA Analysis – Challenge Area 1, Priority Topic 1

Policy and Innovation Group

- **1.** Design and Validation of Ocean Energy Device
- 1.1 Demonstration of ocean energy devices to increase experience in real sea conditions

THE UNIVERSITY of EDINBURGH

1 Design and Validation of Ocean Energy Device

1.1 Demonstration of ocean energy devices to increase experience in real sea conditions

<u>Nº Projects</u> <u>Budget</u> Millions € 120 €100M € 100 10 Large Medium 10 10 € 80 20 100 €m € 60 €51M 2 Large € 40 3 10 Medium Medium 7 € 20 2 7 Medium 12 51 €m 3 Small € -SRIA Ask Delivered Medium Small Large **Funding Amount** €2M €8M

SRIA Ask

Large

Total

Delivered

Small

Large

Total

۲

۲

۲

۲

THE UNIVERSITY of EDINBURGH School of Engineering

1 Design and Validation of Ocean Energy Device

1.1 Demonstration of ocean energy devices to increase experience in real sea conditions

Policy and Innovation Group

Offshore

Renewable Enerav

Supergen

THE UNIVERSITY of EDINBURGH School of Engineering

1 Design and Validation of Ocean Energy Device

1.1 Demonstration of ocean energy devices to increase experience in real sea conditions

Supergen Offshore Renewable Enerav

Main Funders

EC - European Commission Ec - European countries

THE UNIVERSITY of EDINBURGH School of Engineering

Summary: the policy makers tool box

- 6GW Wave + 6GW Tidal Stream Net Zero
- Socioeconomic benefit Just Transition
- System Benefit Enabler of offshore wind
- Consistent Demonstration and Innovation is essential

THE UNIVERSITY of EDINBURGH School of Engineering

Panel session 1 Unlocking growth targets

What changes are needed within policy and practice to enable targets for 2030 and beyond to be achieved within the context of ORE? And what is the role of the Supergen ORE Hub

Engineering and Physical Sciences Research Council

Policy interventions to deliver regional green growth in FLOW projects in the Celtic Sea region

Dr Michael Warner, Director Centre for Local Content Innovation

BEIS - CfD, OWMIS, CCUS, Hydrogen Council DIT - Prosperity Fund, NSO, HSCGS TCE - FLOW Celtic Sea US - offshore wind regulation Canada- offshore energy regulation BG Group - Local Content and Supply Chain Sustainability Manager Imperial College - PhD - Strategic EIA

Celtic Sea FLOW Summit 2023 June 7th, Exeter

Example from Trinidad: Local Platform Fabrication

91.3% of fabrication contract value as Local Content

- Fabrication and structural labour (100% Local Content)
- Construction management (55%)
- Marine supply and tow vessels (100%)
- Electrical and instrumentation labour (59%)
- 99% of labour was national, of which 27% from region

Policy interventions to deliver AMBITIOUS Case 62%

Govt investments and Lease sale New FLOWMIS for component manufacturing bsidies (blades, towers, nacelle) - £500m+ to cover Scotland infrastructure lies, eg Green ment Bank/UK egional EPCm/EPCI (absorb) ucture Bank. OWMIS related FLOW infrastructure tax incentives aligned with guarant es, eg ted underwriting, eg **Regional anchor EPCm/ECPI - international** age gaps due to ex FOAK + turbin + project scalin 0% > 40% turbines: blade and wn moorings and risks; unproven tower/TP manufacture under no' of liabilities Model EPCI contract tenders: 'K' factor Supply Chain ed/Deprived area **OEM** license aid Incentivise corporate and private wire PPAs to investments (cent

t/devolved powers)

Conconting

E

inve

DDAc (including

acts,

ts

low)

ins

V-ST-

bine

d; teel:

eg

hal

bok

at

icts:

R);

Policy interventions to

Dr Michael Warner, Director

ation

Council HSCGS

eltic Sea gulation gulation Manager tegic EIA

CELTIC SEA POWER NEXT STEPS:

COORDINATED POLICY PLANNING ACTION

CORNWALL FLOW COMMISSION

Celtic Sea FLOW Summit 2023 June 7th, Exeter

Photo Credit: Aker Offshore Wind

Who We Are

Renewable Risk Advisers is a specialist insurance broker and risk management / insurance claims consultancy with an unparalleled depth of experience of risk mitigation in the renewable energy sector.

We work with clients developing and operating projects and for new technologies in the following sectors:

- floating wind
- fixed offshore wind
- onshore wind
- wave
- tidal

- floating solar
- onshore commercial solar
- hydro
- geothermal
- ocean-thermal

- Hydrogen and alternative fuels
- waste-to-energy
- biomass
- biofuels
- energy storage

"Our goal is to be seen as trusted advisers and a valuable part of our clients' broader project team."

What We Do

Alternative Risk Strategies

Our original thinking led to EU/UK funded research into the cascading effect of insurability on bankability, to enhance investment through the leveraging effect of risk averse debt on equity. We are actively encouraging the establishment of alternative insurance mechanisms for clients experiencing difficulties in the insurance market.

Strategic Risk/Insurance Advisory

Our offering as strategic risk/insurance advisers supports projects from origination to financial close, through construction and throughout the life of an operational asset. When required by clients we support market placements and the preparation of necessary documentation, including bespoke policy wordings.

Post-Loss Advisory

Our post-loss advisory services seek to frame the structure and pace of a claim, through effective agenda-setting and corporate diplomacy. Familiarity with the two-tier 'Steering Committee' and 'Task Force' approach helps align objectives between Employer, Contractor, and Lead Insurers before settling on fair and equitable terms.

Thought Leadership Workstreams

Orbital's 02: winner of two AR4 contract, EMEC, Orkney, Scotland

Magallanes: winner of an AR4 contract, Morlais, Anglesey, Wales

Simec Atlantis: winner of an AR 4 contract, MeyGen, Scotland

Nova Innovation: Bluemull Sound, Shetland, Scotland

Minesto kites

CorPower Ocean

Wave Energy Scotland - Introduction

• Established in November 2014 as a subsidiary of Highlands and Islands Enterprise

• Funded by the Scottish Government

Funded 5 competitive programmes:

- Power Take-Offs
- Wave Devices
- Advanced Control Systems
- Structural Materials
- Quick Connection Mooring Systems

Technology Development & Innovation

Concept development

Large-scale demonstration

Proof-of-concept testing

Commercialisation

Highlands and Islands Enterpris

Next Generation Technologies

- Direct, distributed, flexible generation
- Electrostatic generation technologies
 - Variable capacitance metamaterials
 - Flexible properties of polymers, elastomers, and dielectric fluids
 - Dielectric Elastomer Generators (DEG) and Dielectric Fluid Generators (DFG)
- Waves \rightarrow stretching, twisting, bending \rightarrow electrical energy
 - A new class of wave energy converters

Panel session 1 Unlocking growth targets Q&A

What changes are needed within policy and practice to enable targets for 2030 and beyond to be achieved within the context of ORE? And what is the role of the Supergen ORE Hub

Engineering and Physical Sciences Research Council