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Real-Time HIL test rig at ICSE, University of Warwick
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PHIL test of wind-LAES-BESS frequency control
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* Inertial control and droop control schemes used on RES systems

* Wind energy, LAES, Battery Energy Storage used to provide frequency
control

* Communication protocol: Modbus —

L]

e
Y
42
=)
Q
£
o

cinergia _~

Inertial control | f — d/dt ki,

| T,s+1

[

+ Tar | % by
Droop control | f, Tps+1 " Prosy =
F* Wind turbine B P
MPPT mode O -

Qg Inertial and droop control scheme for frequency control
ERS




PHIL test of wind-LAES-BESS frequency control
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Real-Time test results

Grid side
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Frequency control using:

WT: inertial control
LAES: inertial+droop control
BESS: inertial control



Real-Time test results
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Kegwords: High shares of intermittent renewable sources cause volatile frequency movements that could jeapardize the
ancillary service continuous aperation of the grid. Liquid Air linergy Storage (LAIS) is an emerging technology that not anly helps
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with decarbonisation of energy sectors, but also has patentials for reliable ancillary services, In this paper, a
hybrid LALS, wind wrbine (WT), and batlery energy storage system (BESS) iv used 0 investigate their contri-
butions in fust frequency control, The inertial control, droop control and combined inertial 4nd droop terms are
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control terms alang with inertial conteal of WL and BLISS provide reliable frequency control. T'o further improve
the frequeney nadir, a Fugzy control is proposod and applicd on the LAES. The proposed cantrol system provides
& more adaptive performance against disturbanees. Also, experimental tests are condueted 1o validate the pro-
posed control method using a real-fime hardware-in.the-loop test rig. The simulation and experimental resulls
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1. Introduction or even in the miciogrids, ancillay service support from hybrid RESs
along with energy storage technologies is essentially required. Battery

Thank youl!

With the emerging concerns on the global warming, there has been
an unprecedented push towards decarbonisation. The UK government
has set policies and commitments to decarbonise the UK electricity
system by 2035. In this vegard, the coal-based power plants will be
phased out from the electricity network by October 2024 [1]. According
to the British energy security strategy, 50 GW offshore wind power ca-
pacity will be accommodated into the electricity network, as well as
production of 10 GW hydrogen by 2030, alengside large scale and
long-duration compressed air energy storage tc sve increased
tem flexibility [2]. Hybrid renewable energy sources (RES) have been
putinto development and operation as the key enablers ro reach net zero
targets. Around 90% of the glabal power capacity expansion between
2021 and 2022 has come from renewables [3,4].

Large shares of RESs into the power system cause reduction in the
system inertia, where grid frequency movements become more volatile
and unpredictable [5,6]. In particular, where the power system is small
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energy storage (BESS) as a competitive solution, provides fast power
response and with short duration storage up to 4h [7]. However, they
remain unfave due to high mai & costs, short life cycle and
degradation in performance with aging [3,2].

Other forms of maturely developed large-scale energy storage rech-
nologies such as pump hydro energy storages (PHES) [10] and com-
pressed air energy storage {CAES) [11] are restrained by the
geagraphical locations. For PHES, water will be stored in an elevated
reservoir, itis the most widely adopted electrical storage technology due
o its low cest (5-100 $/kWh), high efficiency and high technology
readiness level [12], but is limited by geographical requirements. The
compressed air energy storage requires underground caverns and costly
high-pressure vessels, which has relatively high efficiency (up to 70%)
with low cost (20-200 $/kWh) [17]. But these storages have low energy
densities and require large storage volumes [27]. Therefore, low-cost,
long-duration and geographically unconstrained grid-scale energy
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