

Autumn Assembly University of Oxford Thursday 29 September 2022

www.supergen-ore.net | #SupergenORE22

Multi Energy Vector Demonstration Project Feasibility Study: Decarbonising Shipping Utilising Renewable Hydrogen

<u>Dr Matt Allmark*</u>, Dr Stephanie Ordonez-Sanchez, Dr Matt Lewis and Dr Alberto Roldan Martinez, Bertie Webster, Chris Shaw, Julia Komar, Molly Isaacs *allmarkmj1@Cardiff.ac.uk

Autumn Assembly University of Oxford Thursday 29 September 2022

www.supergen-ore.net | #SupergenORE22

Project Background

- Supergen Cross-Hub 'Seedcorn' funding.
- Project Aims:
 - 'to assess the feasibility constructing a UK based demo of utilizing green hydrogen-based fuels to power industrial shipping activities.'
 - Can this be done using curtailed OSW power.
- Funding of 20K: limited RA time, student placements.

2

CARDIFF

UNIVERSITY

PRIFYSGOL

RDYf

University of Strathclyde

Engineering

Supergen

Autumn Assembly

University of Oxford Thursday 29 September 2022

Sector Reviews

www.supergen-ore.net | #SupergenORE22

Green Hydrogen Production:

Fuel	el Hydrogen			Ammonia	Methanol	Synthetic methane	
Synthesis method	Alkaline electrolyser	PEM electrolyser	Solid oxide electrolyser	Low-carbon Haber-Bosch	Hydrogenation	Methanation	
Feedstock	H₂O, KOH, Ni cat. ⁴	H ₂ O, polymer membrane, Pt/ Ir cat. ^{4, 18}	H ₂ O, ceramic cell membrane ⁴	Green H ₂ , N ₂ , metal cat. ^{8, 23}	Green H ₂ , CO ₂ , metal cat. ⁴	Green H ₂ , CO/CO ₂ 4	
Energy demand	50-73 MWh/t ⁴	47-73 MWh/t ⁴	37 MWh/t4	12.5 MWh/t ⁴ 11.02 MWh/t ⁴		26.9 MWh/t ⁴	
Efficiency	60-70% ³	65-80% ³	60-65% ³	55-60% ²³	-	-	
TRL	7-9 ⁴	7-84	6-74	74	74	6-74	
Storage	Liquified belo	w -250°C ⁷ / corr 800 bar ²⁹	pressed up to	Liquified at 80 bar or -33°C ⁸	Liquid at ambient T and P ⁷	Liquified at - 162°C (prior purification) ⁴	
Carbon footprint	().56 tCO ₂ eq/tH ₂	4	0.12 tCO ₂ eq/tNH ₃ ⁴	-0.67 tCO₂/tCH₃OH⁴	-1.31 tCO ₂ /tCH4 ⁴	
Good interaction with renewable energy	No ¹⁷	Yes ¹²	No ¹²	Yes, with a H storage unit		Yes ⁴	
Cost	650-1200 €/k₩⁴	1,000 €/k₩ ⁴	1,000 – 2,000 €/k₩⁴	735-800 €/t ⁴	400-600 €/t ⁴	2000-3500 €/t⁴	

PRIFYSGOL

BANGOR

UNIVERSITY

Green Hydrogen Utility:

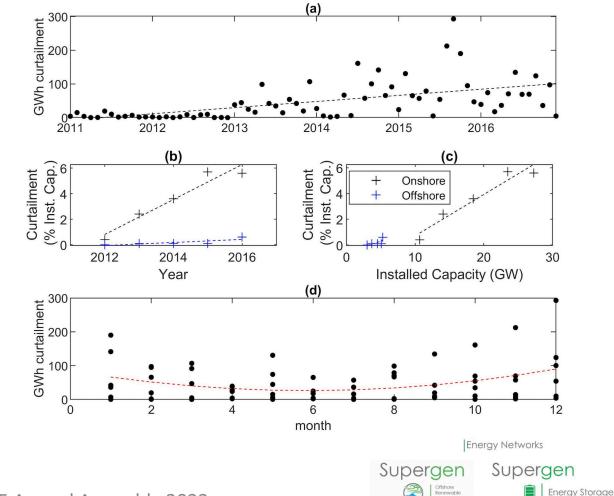
Technology	TRL	Fuel Type	Fuel Volumetric Energy Density [GJ/Nm3]	Power and Propulsion Technology	Auxiliary Technologies	Fuel to Power efficiency %	On board Volumetric requirements m3 *	CO2 Emissions kgCO2/G	NOx Emissions % of HFO	SOx Emission: %of HFO
Current technology	9	Heavy fuel oil	35(2)	Combustion	Scrubbers		1,000 ⁽²⁾		100%	100%
Hydrogen AFC		Hydrogen liquefied - 253°C	8.5 ⁽²⁾		Insulation, cryogenic storage	50-60 ⁽⁵⁾	4,117 ⁽²⁾		Not avoided	0%
Hydrogen PEMFC		Hydrogen liquefied - 253°C	8.5 ⁽²⁾		Insulation, cryogenic storage	50-60 ⁽⁵⁾				0%
Two stroke Hydrogen combustion engine	6	Hydrogen compressed 700 bar	7.5 ⁽²⁾	Internal Combustion engine			4,667 ⁽²⁾		0%	0%
Hydrogen Gas Turbine	6 ⁽⁴⁾	Hydrogen compressed 700 bar	7.5 ⁽²⁾	Gas Turbine					0%	0%
Two stroke Ammonia combustion engine	5	Ammonia at 10 bar	12.7 ⁽²⁾	Internal Combustion engine		85 ⁽⁵⁾	2,755 ⁽²⁾	5%		5-10%
Ammonia SOFC	6/7?	Ammonia at -34°C	12.7 ⁽²⁾	SOFC						0%
four stroke Otto-cycle engine	98)	Methanol	15.8 ⁽¹⁾	four stroke Otto-cycle engine				90% of HFO?	~40% ⁽⁵⁾	10% ⁽⁵⁾
Two stroke dual fuel engine	8/9 - Commercially ready	Methanol	15.8 ⁽¹⁾	Two stroke diesel engine	EGR or SCR systems to reduce NOx		2,215 ⁽²⁾	90% of HEO?	~70%	0%
Two stroke LNG combustion engine	8	Hydrocarbon mainly methane	118% MJ/kg 43%kg/m3 Of HFO	Combustion			~2 times HFO	26% of HFO?	70-80%	1-10%

Supergen ORE Annual Assembly 2022

Energy Networks

Supergen

Offshore Renewable Energy



Autumn Assembly University of Oxford Thursday 29 September 2022

www.supergen-ore.net | #SupergenORE22

Modelling Green H₂ Production for Bulk Liquid Shipping

- Using curtailed OSW wind power to produce green hydrogen – how far can a LNG tanker travel?
- Test case: LNG Tanker energy consumption: 1.89 km/MWh [1].
- We consider, hydrogen combustion at 40% and Fuel Cells at 55 %, efficiency.

Modelling Green H₂ Production for Bulk Liquid Shipping

Model Overview

Model Length: 1 year; Model Resolution: 10 min

Supergen

Autumn Assembly

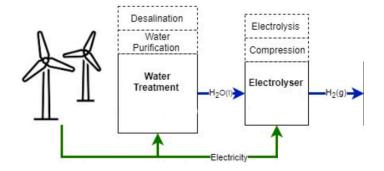
Thursday 29 September 2022

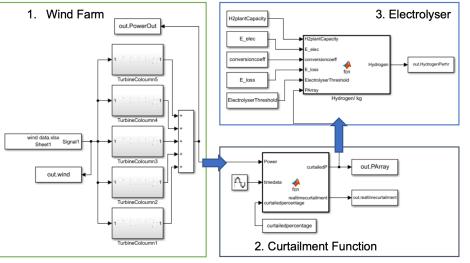
www.supergen-ore.net | #SupergenORE22

University of Oxford

Wind Data: Weibull Sampling

Turbine Rating – 3.6 MW (SWT 3.6) Cp – 0.35;


No Columns 5; No. Rows 5


Turbine Modelling – Power Curve Downtime Modelling – Average down time [2] Wake Modelling - Park Wake model [3]

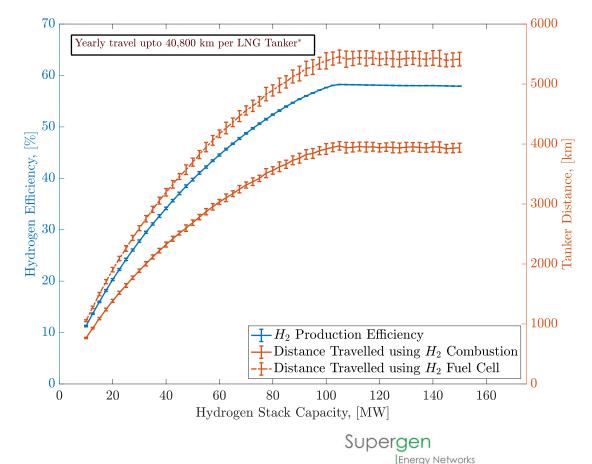
Hydrogen Modelling – PEM Electrolyser adapted from [4]

$$m_{H_2} = \frac{E_{curt}}{\frac{E_{elec}}{\eta} + E_{Osm} + E_{Comp}}$$

Curtailment Modelling – Based on Balancing Mechanism data (Elexon) [4]

Autumn Assembly University of Oxford Thursday 29 September 2022

www.supergen-ore.net | #SupergenORE22


Modelling Green H₂ Production for Bulk Liquid Shipping

Conclusions

- Curtailment based demo is seems unfeasible
- Curtailment rates growing in both offshore and onshore contexts.
- For the ~100 MW array, max distance travelled by LNG tanker is ~4,000km at 8% curtailment rate.

Analysis shows high sensitivity to installed electrolyser capacity, curtailment rate and kWh/kg of hydrogen.

Curtailment /%	Compressed H2 /tonnes per	Hydrogen Energy /MWh	Car Range /1000km	LNG tanker range /km	Homes powered via
	year .			U	Fuel cell
5.5	146	4870	12514	3682	812
8.5	230	7659	19714	5790	1277
14	374	12470	32057	9427	2078
22	590	19630	50571	14840	3271

Supergen

Supergen

Energy Storage

*Based on statistics presented in [1]

Supergen ORE Annual Assembly 2022

Supergen Offshore Renewable Energy (S)

Autumn Assembly University of Oxford Thursday 29 September 2022

www.supergen-ore.net | #SupergenORE22

Modelling OSW Maintenance powered via H₂

Windfarm:

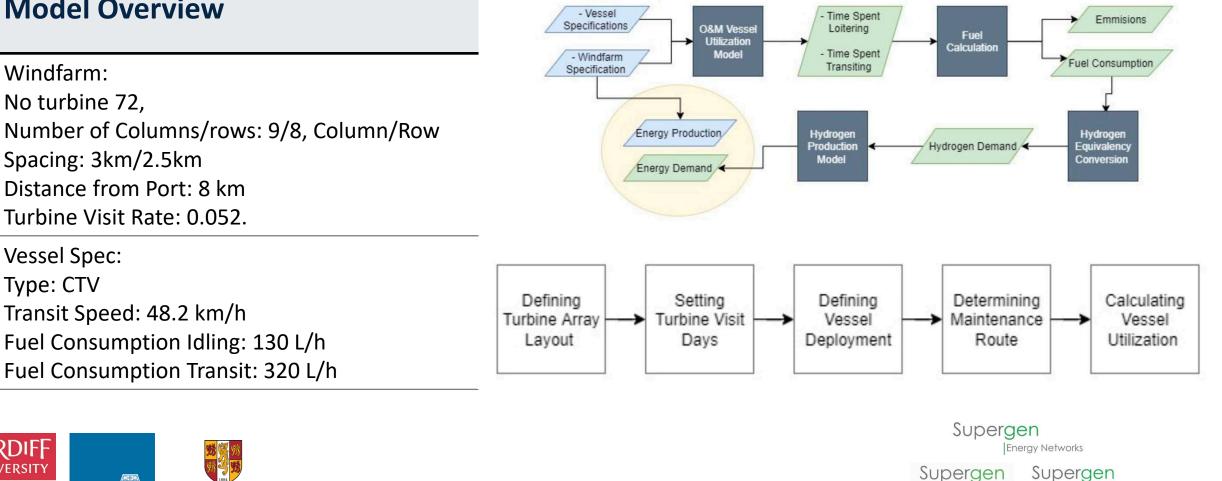
Vessel Spec:

University of Strathclyde

PRIFYSGOL

BANGOR

UNIVERSITY


Type: CTV

RDIFF

UNIVERSITY

PRIFYSGOL

AERDY

Energy Storage

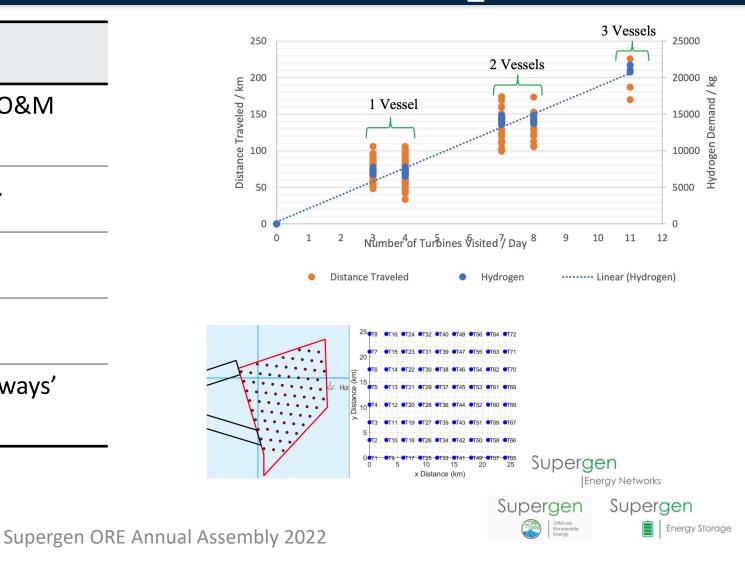
Offshore Renewable

Autumn Assembly University of Oxford Thursday 29 September 2022

www.supergen-ore.net | #SupergenORE22

Modelling OSW Maintenance powered via H₂

Key Findings:


MO-VUMA Tool developed, simulating O&M vessel movements.

Applied to Humber Gateway Windfarm.

Annually 582,262 L of MGO used.

Equivalent H₂ demand: 242,151 kg/H₂

Would require 16-18% of Humber Gateways' energy output.

8

Supergen Construction Constr

www.supergen-ore.net | #SupergenORE22

Thursday 29 September 2022

Conclusions

- Offshore H₂ production model produced and illustrated inclusion of downtime, curtailment variation, wind variation, array structure.
- Development of MO-VUMA Tool developed, simulating O&M vessel movements.
- Current models suggest that curtailment based green hydrogen pilot infeasible.
- ~17% of Humber Gateway array energy would be required to power O&M activities.

Supergen

Supergen

Energy Networks

Supergen

Energy Storage

Autumn Assembly University of Oxford Thursday 29 September 2022

www.supergen-ore.net | #SupergenORE22

Any Questions?

References:

[1] Millborrow, D. 2010. Breaking down the cost of wind turbine maintenance. *Windpower Monthly* 15 June. Available at: Breaking down the cost of wind turbine maintenance | Windpower Monthly

[2] Rabia Shakoor, Mohammad Yusri Hassan, Abdur Raheem, Yuan-Kang Wu, Wake effect modeling: A review of wind farm layout optimization using Jensen's model, Renewable and Sustainable Energy Reviews, Volume 58, 2016, Pages 1048-1059, <u>https://doi.org/10.1016/j.rser.2015.12.229</u>.

[3] Dinh, N. Leahy, P. McKeogh, E. Murphy, J. and Cummins, V. 2020. Development of a viability assessment model for hydrogen production from dedicated offshore wind farms. *International Journal of Hydrogen Energy* 46, pp. 24620-2463, <u>https://doi.org/10.1016/j.ijhydene.2020.04.232</u>

[4] Michael Joos, Iain Staffell, Short-term integration costs of variable renewable energy: Wind curtailment and balancing in Britain and Germany, Renewable and Sustainable Energy Reviews,

Volume 86, 2018, Pages 45-65, https://doi.org/10.1016/j.rser.2018.01.009.

[5] McKinlay, C. Turnock, S. and Hudson, D. 2021. Route to zero emission shipping: Hydrogen, ammonia or methanol. *International Journal of Hydrogen Energy*. 46 pp. 28282-28297. Doi: https://doi.org/10.1016/j.ijhydene.2021.06.066

Supergen ORE Annual Assembly 2022

