

Policy and Innovation Group

What are the socioeconomic and system benefits of ocean energy?

A GB 2050 net zero case study

Shona Pennock and Henry Jeffrey Policy and Innovation Group, University of Edinburgh

How much wave and tidal could be installed by 2050?

THE UNIVERSITY of EDINBURGH School of Engineering

Policy and Innovation Group

- GB deployment modelling to 2050
- ESME model run by ESC
- Future Ambition (96%) Scenario

CATAPULT

How much wave and tidal could be installed by 2050?

What are the socioeconomic benefits of ocean energy?

THE UNIVERSITY of EDINBURGH School of Engineering

What are the socioeconomic benefits of ocean energy?

THE UNIVERSITY of EDINBURGH School of Engineering

What are the system benefits of ocean energy?

THE UNIVERSITY of EDINBURGH School of Engineering

THE UNIVERSITY of EDINBURGH School of Engineering

Policy and Innovation Group

How do demand and renewable resources compare?

THE UNIVERSITY of EDINBURGH School of Engineering

- Electricity demand is highly seasonal in GB
- Wind generation higher in winter
- Solar generation higher in summer
- Tidal consistently available in cycles
- Wave generation higher in winter coinciding with peak demand

Hourly dispatch – first week in January

THE UNIVERSITY of EDINBURGH School of Engineering

Policy and Innovation Group

Without marine

With marine

System benefits results - 2050

THE UNIVERSITY of EDINBURGH School of Engineering

Policy and Innovation Group

Without marine

The socioeconomic and system benefits of ocean energy

Conclusions

- Energy system modelling projects 6.4GW
 Wave and 6.2GW Tidal Stream by 2050
 if SET Plan targets are reached by 2030
- Resultant GVA to UK economy (2020-2050):
 - £4.9bn £8.9bn from UK deployments
 - £11bn £41bn from global deployments
- Resultant system benefits in 2050:
 - £1.03bn annual reduction in cost of dispatch
 - 300 GWh reduction in fossil fuel dispatch

Engineering and

Physical Sciences

Research Council