System-level Co-design and Control of Large Capacity Wave Energy Converters with Multiple PTOs

Guang Li – Queen Mary University of London 20/January/2022

To be presented at Supergen ORE Hub Fourth Annual Assembly

The University of Manchester

- Queen Mary University of London:
 - Guang Li (Control)
- Exeter University
 - Mike Belmont (Wave prediction)
- University of Manchester
 - Judith Apsley (Test rig design and dry testing)
 - Matteo lacchetti (Power electronics)
 - Samuel Draycott (Hydrodynamics)
 - Peter Stansby (Device design)
- Industrial partners: M4 Wave Power, Mocean Energy, Eco Wave Power.

M4WavePower

Moored MultiMode Multibody

Outline of the project

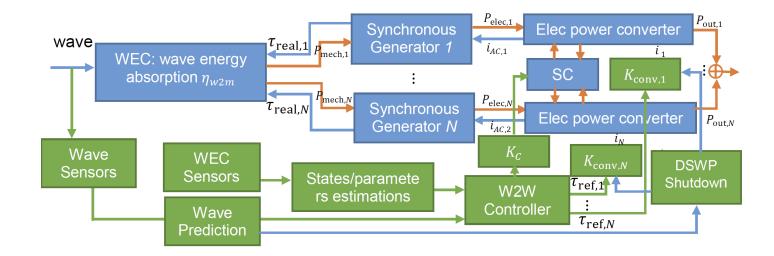
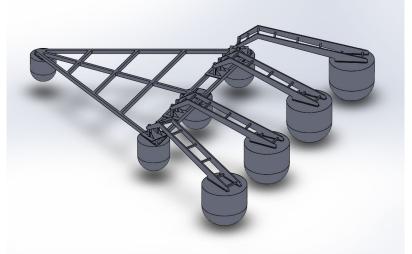



Fig. 2: Control system block diagram

- WP1: Modelling for all the subsystems: wave-to-wire model.
- WP2: Multi-directional wave prediction and shutdown.
- WP3: Control framework based on the wave-to-wire model.
- WP4: Co-design of the whole system.
- WP5: HIL for validation of control and co-design.

Fig. 1: M4 with 3 PTOs

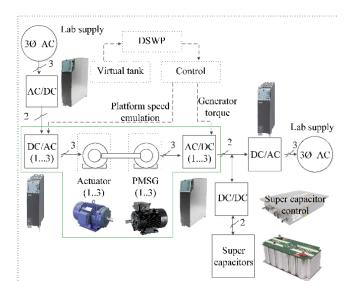
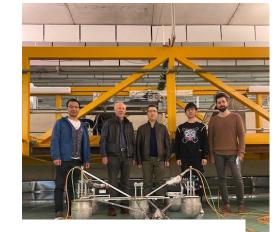


Fig. 3: HIL test rig for M4 control: Components: Gear box, generator, supercapacitor, electronic converters, microcontroller and numerical tank

Progress

- Project started in September 2021.
- Two PDRAs (Queen Mary, Manchester) have started working. Another PDRA will be recruited soon.
- The hydrodynamic model has been extended to multi-directional waves.
- The model has been validated in directional wave conditions.
 P. Stansby, E. C. Moreno, S. Draycott, and T. Stallard, "Total wave power absorption by a multi-float wave energy converter and a semi-submersible wind platform with a fast far field model for arrays," J. Ocean Eng. Mar. Energy, 2021.
- Fast Wave Profile Estimation created for Multi-directional Deterministic Sea Wave Prediction.
- Initial design of HIL test rig is drafted.


Workpackages	Lead	Year 1				Year 2				Year 3			
		Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12
WP1.1 Wave-to-wire modelling and virtual tank	UoM												
WP1.2. Control-oriented W2W model	QMUL				_								
WP2.1. Multi-DSWP integration into control.	UoE					•							
WP2.2. Multi-DSWP shutdown and integration into control	UoE								•				
WP3. W2W control framework development	QMUL				+	•				+			
WP4. Co-design of the WEC system.	QMUL										•		
WP5.1. W2W test rig design and construction	UoM							•					
WP5.2. Dry testing on W2W test rig	UoM											★ ★	
WP6. Evaluation and exploration of the proposed techniques	QMUL												•

Timeline

M4 tank testing at Plymouth – additional work

- 2 PTOs controlled by Linear Noncausal Optimal Control.
- Deterministic sea wave prediction (DSWP) was employed.
- Control task: maximise mechanical power Control performance comparison:
- Noncausal optimal control>Causal optimal control>passive

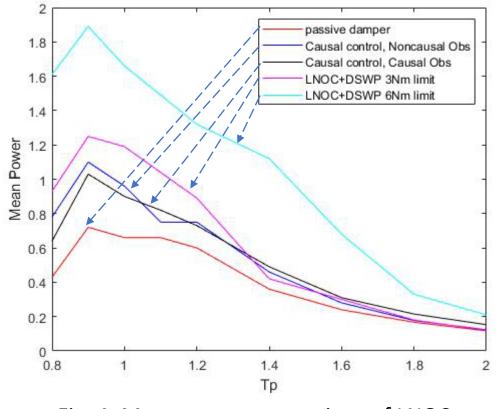


Fig. 4: Mean power comparison of LNOC and passive damper.

Thank you!