System-level Co-design and Control of Large Capacity Wave Energy Converters with Multiple PTOs

Guang Li – Queen Mary University of London
06/September/2021
The Consortium

• Queen Mary University of London:
 • Guang Li (Control)

• Exeter University
 • Mike Belmont (Wave prediction)

• University of Manchester
 • Judith Apsley (Test rig design and dry testing)
 • Matteo Iacchetti (Power electronics)
 • Samuel Draycott (Hydrodynamics)
 • Peter Stansby (Device design)

• Industrial partners: Mocean Energy, Eco Wave Power.
Outline of the project

• **The objective:** to develop a unified systematic platform based on whole system optimal control, design and control-operational techniques for WECs to reduce LCOE.

• **The design/control features:**
 1) Multi-objective control: Maximize electricity generation and improve electricity quality (power spikes, peak-to-average power ratio).
 2) System-level Control and Co-design (all stages from waves to wire)
 3) Minimise risk in shutdown operations.
 4) Directional waves considered in modelling and control.
 5) Incorporate wave prediction into control to achieve non-causal optimality.
Targeting Case Study – M4

The advantages of M4:
- Large capacity – comparable to wind turbines.
- Multiple floats and multiple PTOs – lower P2A ratio.
- Linear hydrodynamics – friendly to controller design.
- Reconfigurable – No. of floats/PTOs, float layout.

Initial simulation results:
- 8-float WEC (4 PTOs) can capture 4 times energy compared to 3-float (1 PTO).
- Non-causal control can improve energy output by 30% to 93%.

Fig. 1. 3-D view of the 8 floats M4 configuration.

Fig. 2. Capture width ratio comparison: 8 floats (4 PTOs vs 3 floats (1 PTO); optimal control vs passive damper.

Z. Liao, P. Stansby, G. Li, High-capacity wave energy conversion by multi-floats, multi-PTO, control and prediction: generalised state-space modelling with linear optimal control and arbitrary headings, accepted by IEEE Transactions on Sustainable Energy.
The Work Packages

- WP1: Modelling for all the subsystems: wave-to-wire model.
- WP2: Multi-directional wave prediction and shutdown.
- WP3: Control framework based on the wave-to-wire model.
- WP4: Co-design of the whole system.
- WP5: HIL for validation of control and co-design.

Fig. 4: HIL test rig for M4 control: Components: Gear box, generator, supercapacitor, electronic converters, microcontroller and numerical tank
Thank you!