

EPSRC NHP-WEC

TALOS WEC Research Project Lancaster University

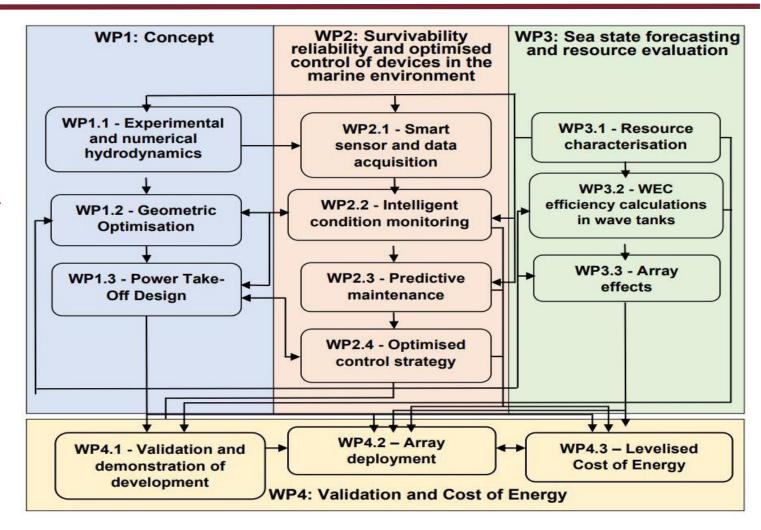
Professor George Aggidis

FIMechE, FIMarEST, FEI, FIET

Head of Energy Engineering

g.aggidis@lancaster.ac.uk

Project Team & WP Structure



- P-I Professor George AGGIDIS
- Co-I Dr Xiandong MA
- Co-I Professor C. James TAYLOR
- PDRA1 SRA Dr Wanan SHENG
- PDRA2 RA Dr Yueqi WU

♥® ★ ♥ UNIVERSITY OF HULL

- Co-I Dr Robert DORRELL
- Co-I Professor Daniel PARSONS
- PDRA3-SRA Dr Igor RIZAEV

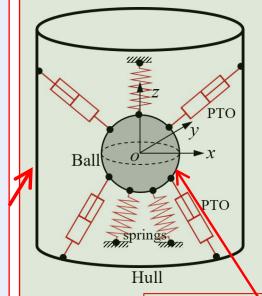
WP1 - Publications: paper 1 & paper 2 Lancaster University

Paper 1 (open access):

'Hydrodynamic studies of floating structures: Comparison of wave-structure interaction modelling', Ocean Engineering, Vol. 249, 110878

Paper 2 (open access):

 'Time-Domain Implementation and Analyses of Multi-Motion Modes of Floating Structures', Journal of Marine Science and Engineering, Vol. 10, 662. https://doi.org/10.3390/jmse10050662



WP1 - Implementation & Comparison Lancaster of TALOS WEC

Equations for hull motion

$$\begin{cases} (m_{s} + A_{11})\ddot{x}_{s1}(t) + \sum_{j=1}^{6} \int_{0}^{t} K_{1j}(t - \tau)\dot{x}_{sj}(\tau)d\tau + C_{s1}x_{s1}(t) = F_{1}^{exc}(t) - F_{pto1}(t) - F_{spr1}(t) \\ (m_{s} + A_{22})\ddot{x}_{s2}(t) + \sum_{j=1}^{6} \int_{0}^{t} K_{2j}(t - \tau)\dot{x}_{sj}(\tau)d\tau + C_{s2}x_{s2}(t) = F_{2}^{exc}(t) - F_{pto2}(t) - F_{spr2}(t) \\ (m_{s} + A_{33})\ddot{x}_{s3}(t) + \sum_{j=1}^{6} \int_{0}^{t} K_{3j}(t - \tau)\dot{x}_{sj}(\tau)d\tau + C_{s3}x_{s3}(t) = F_{3}^{exc}(t) - F_{pto3}(t) - F_{spr3}(t) \\ (I_{s44} + A_{44})\ddot{x}_{s4}(t) + \sum_{j=1}^{6} \int_{0}^{t} K_{4j}(t - \tau)\dot{x}_{sj}(\tau)d\tau + C_{s4}x_{s4}(t) = F_{4}^{exc}(t) - M_{pto1}(t) - M_{spr1}(t) \\ (I_{s55} + A_{55})\ddot{x}_{s5}(t) + \sum_{j=1}^{6} \int_{0}^{t} K_{5j}(t - \tau)\dot{x}_{sj}(\tau)d\tau + C_{s5}x_{s5}(t) = F_{5}^{exc}(t) - M_{pto2}(t) - M_{spr2}(t) \\ (I_{s66} + A_{66})\ddot{x}_{s6}(t) + \sum_{j=1}^{6} \int_{0}^{t} K_{6j}(t - \tau)\dot{x}_{sj}(\tau)d\tau + C_{s6}x_{s6}(t) = F_{6}^{exc}(t) - M_{pto3}(t) - M_{spr3}(t) \end{cases}$$

2-body system: Hull + Ball

 $m_b\ddot{x}_{b2}(t) = F_{pto2}(t) + F_{spr2}(t)$ $m_b \ddot{x}_{b3}(t) = F_{pto3}(t) + F_{spr3}(t)$ $I_{bxx}\ddot{x}_{b4}(t) = M_{pto1}(t) + M_{spr1}(t)$

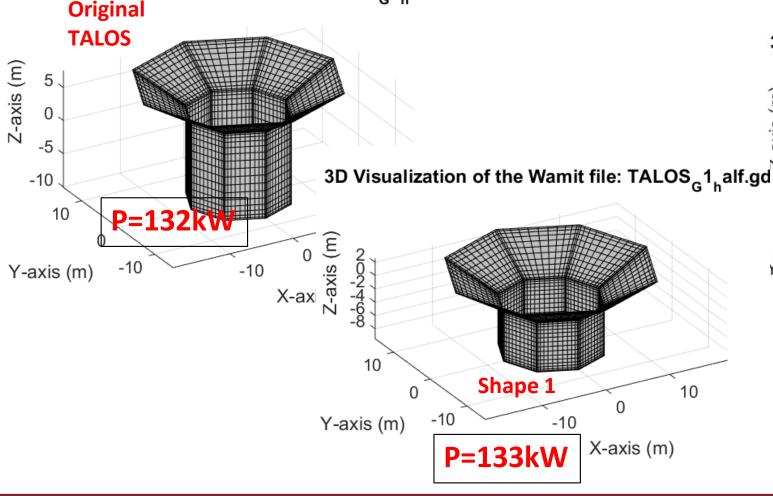
Equations for ball motion

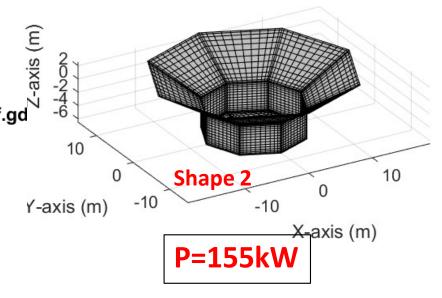
 $I_{byy}\ddot{x}_{b5}(t) = M_{pto2}(t) + M_{spr2}(t)$ $I_{bzz}\ddot{x}_{b6}(t) = M_{pto3}(t) + M_{spr3}(t)$

 $m_b \ddot{x}_{b1}(t) = F_{pto1}(t) + F_{spr1}(t)$

UNIVERSITY OF HULL

ENERGY AND ENVIRONMENT INSTITUTE

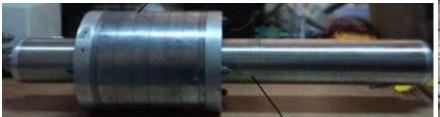

School of Engineering



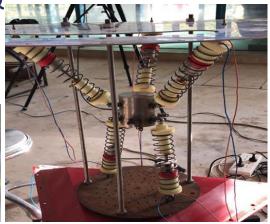
Lancaster University WP1 - Initial Optimisation of TALOS WE Cuniversity Panewable Energy Group WP1 - Initial Optimisation of TALOS WE CUniversity

3D Visualization of the Wamit file: TALOS_G1_half.gd

OF HULL



WP1 - International collaborations



- NREL & Sandia NL (USA), a TEAMER funding support (\$150,000) approved to build time-domain modelling for TALOS WEC using WEC-SIM facility
- AUTH & IHU Universities (Greece) are building time-domain model using DNV SESAM code (for comparisons with in-house time-domain model)
- Zhejiang University (China), experimental testing & computational time-domain model of TALOS WEC

WP2 - Survivability Reliability & Optimised Control of Devices in the marine environment

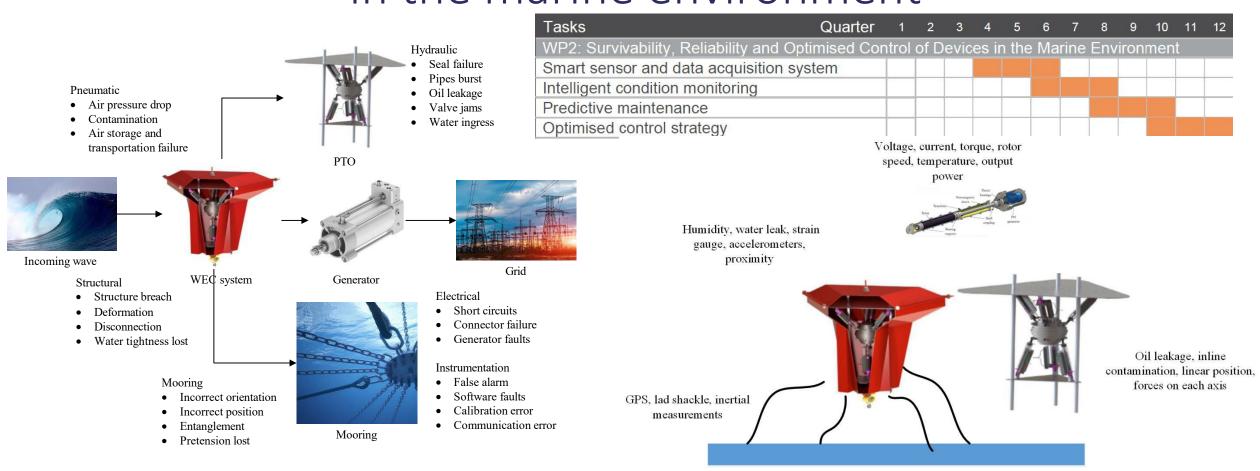
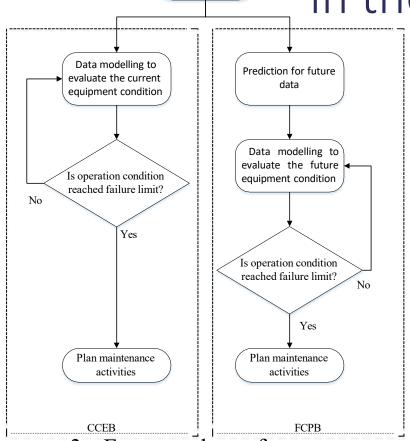


Figure. 1 Common failure modes of WEC

Figure. 2 Sensing system of the TALOS WEC


Engineering and Physical Sciences Research Council

Lancaster University Renewable Energy Group WP2 - Survivability Reliability & Optimised Control of Devices in the marine environment

Raw data

3 Frameworks of current condition evaluation-based (CCEB) and future condition prediction-based (FCEB) maintenance strategies

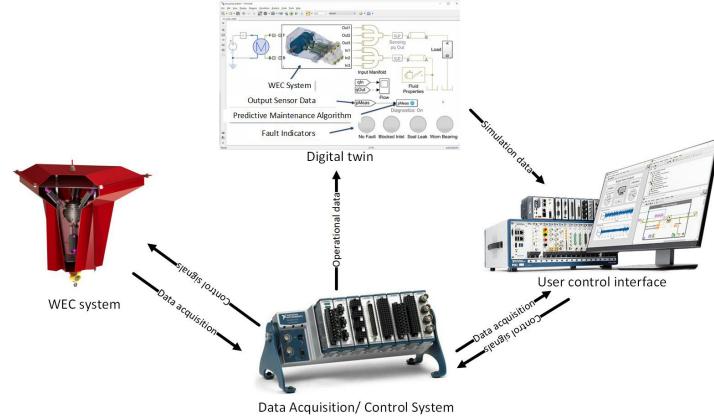
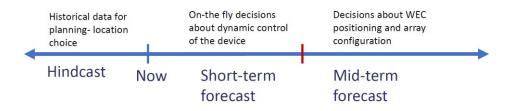


Figure. 4 Optimised control strategies


WP3 - **SmartWave** - High Accuracy & High Spatial Fidelity Wave Prediction

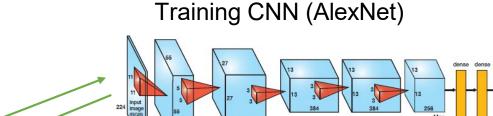
Artificial Intelligence (Artificial Neural Network – ANN and Convolutional Neural Network – CNN) will be advanced to estimate key oceanographic parameters i.e. wave height, direction, frequency, and speed. State-of-the-art remote sensing monitoring and in situ data from European Space Agency satellite Sentinel 1 (Synthetic Aperture Radar – SAR) will be utilised, whilst access to high-fidelity data from the Cefas WaveNet buoys will provide ground truth data for validation.

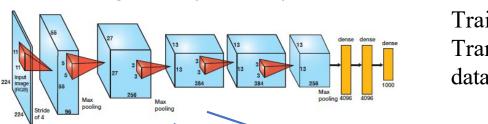
Example results – Burbo Bank

ANN based system

Data Acquisition	Data processing	Artificial neural networks (ANNs)	Spatial distribution
Sentinel 1 - SAR Images Buoy data	Initial processing, Extract parameters related to sea roughness from different SAR image bands	Correlate sea roughness parameters to buoy data	Apply ANNs to derive sea state in any location

WP3 - CNN based system


Deep learning


SAR imagery synthetic database creation

Different parameters: wind directions wind speeds fetch size

incidence angles

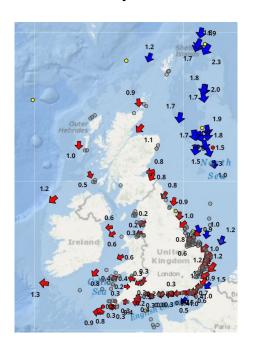
polarizations

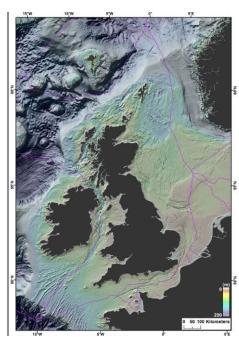
Strategies:

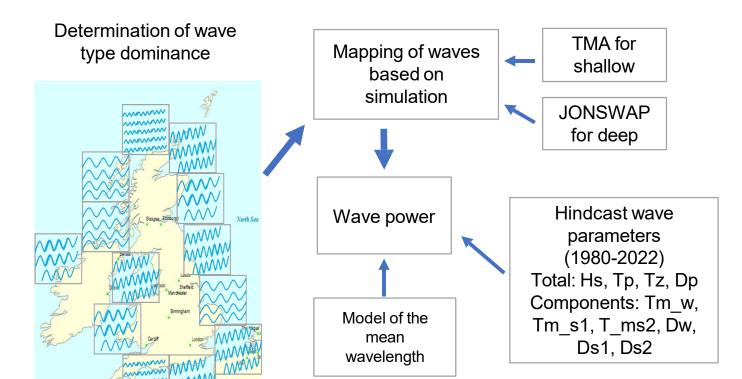
Training from scratch Transfer learning with real data

Automated classification and estimation of sea state parameters: wave height direction frequency speed

Bayesian optimization to find optimal network hyperparameters




WP3 - Mapping of wave power for shallow, mediate, and deep-water areas



Cefas WaveNet buoys

Bathymetry offshore model of the UK (EMODnet and GEBCO)

WP4 - Collaborations

- Ass Prof Chenglong Guo (China) & Professor Dakshina De Silva (UK)
 - Review of the levelized cost of wave energy based on techno-economic model

- Dr David Howard (UK)
 - Environmental aspects
- Ass Prof James DiLellio (USA)
 - Bridge the gap between TALOS WEC small-scale modelling and the higher TRL required to provide cost evidence and demonstrate its commercial potential

TALOS International Collaboration Lancaster

Professor Spyros Mavrakos Professor John Anagnostopoulos

Ass Professor Constantine Michaelides

Ass Professor Eva Loukogeorgaki

Professor Pierre Ferrant Professor Alain Clément Dr Aurélien Babarit

Ass Professor Guillaume Ducrozet Dr Jean-Christophe Gilloteaux Dr Ruddy Kurnia

Dr Sal Husain Dr Stein Housner Dr Matthew Hall

Dr Budi Gunawan

Renewable Energy Technologies

1940年

Dr Jorge AndresLeon Quiroga

Dr Charikleia 'Lily' Oikonomou

Joint Research Centre

Dr Evdokia Tapoglou

Ass Professor James DiLellio

Ass Professor Yi-Hsiang Yu

Professor John Ringwood

Professor Hakan Yavuz

Ass Professor Carrie Hall

Professor Brad Buckham Professor Curran Crawford

Ass Professor Chenglong Guo Professor Dakshina De Silva

Ass Professor Hui Zhang

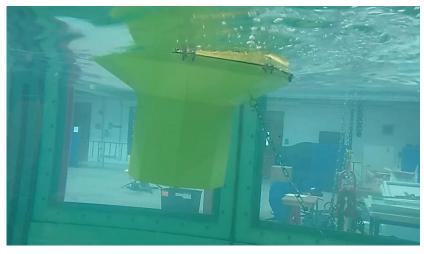
Professor Dahai Zhang Dr Tan Ming

Iñaki Zabala Calvo

UNIVERSITY **OF HULL**

ENERGY AND ENVIRONMENT INSTITUTE

Engineering and Physical Sciences Research Council


Schoolof Engineering

Professor George Aggidis

FIMechE, FIMarEST, FEI, FIET

Head of Energy Engineering

g.aggidis@lancaster.ac.uk

