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A hybrid wind and wave floating platform to provide

a minimum power baseload for offshore applications.
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Hybrid platform Power performance
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Using elastic foam tests to investigate an interpretation method

of the ROCOCONE p-y module
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Development of High-Fidelity Models for
Extreme Loading Events on ORE Devices
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Aims and Objectives

'] Develop high-fidelity numerical tools in OpenFOAM to
assess the survivability of floating offshore renewable
energy (ORE) devices.

Integrate response-conditioned short design wave (SDW)
techniques into the models, developed through Supergen
ORE Hub, for more efficient ultimate load estimation.

Design Waves and High-Fidelity Modelling

'] SDW techniques efficiently predict ultimate loads for given
metocean conditions.

'] Unlike traditional 3-hr irregular sea states, SDWs are typically
short wave groups that target extreme events.
Response-conditioned methods are being developed through
Supergen, using the response RAOs.

The short duration of SDWs enables high-fidelity simulations
of extreme responses to be more practical.

This makes computational fluid dynamics (CFD) a more
viable tool in the design process for floating ORE devices.

Figure 3: CFD model of a pitch response-conditioned SDW (most
likely extreme response) interaction with a FOWT.

Floating Offshore Wind

| Developing a numerical replica
(Fig. 3) of the COAST Lab’s 1:70
scale VolturnUS-S (Fig. 4).
| The model enables:
I Insight on fluid flow.
] Increased flexibility to vary
device characteristics.
] Expansion of databases on
ORE ultimate loads.
] Consideration of flow-
related responses.
] Test case being developed of
pitch response-conditioned SDW
interactions with a FOWT (Fig. 3).

Figure 4: Photograph
of the COAST Lab’s
1:70 scale model of
the VolturnUS-S3.

Figure 1: CFD model of the VLFS. The model is being validated
against reqgular wave data collected in the COAST Lab.

Very Large Floating Structures (VLFS) Future Work

1 Developed a numerical model of a floating VLFS, the basis of ] Extend the FOWT model to include combined wind-wave
a hybrid wind-wave platform being considered in Supergen?. short design events, building on a recent Impact

| The platform consists of three interconnected pontoons
with mechanical hinges.
A potential flow model was developed to estimate the
motion of the platform in regular and irregular wave
loading.
A three-way validation between experiments, high fidelity
and low order numerical approaches is currently under way.
The CFD model enables assessment of green water impact,
extreme hinge/mooring loads, and pressure distributions.

& Figure 2° Physical
N model of the VLFS
being tested in the
COAST Laboratory.
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Acceleration Project®.

Publicly release the FOWT model for broader research and
industry use.

Validate both CFD models against physical modelling data.
Utilise models to expand databases on ultimate loads for
ORE structures>.
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WaveTide: Wave Effects on a Benchmark Tidal Energy Device
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» The tidal turbine benchmark exercise Stage Il experiments with steady wave
has finished in March 2025.

» Workshops to be held for the blind prediction campaign with Stage II
measurements during summer 2025, in order to:

"I improve accuracy and confidence of wave-rotor modelling techniques

'] quantify modelling errors for different techniques under different wave
scenarios

] This project aims to develop and evaluate the current CFD modelling
technologies for tidal turbine under waves on a current through collaboration
with research partners, and is published in AWTEC 2024 Conference.

] This project is funded by the EPSRC SupergenORE HUB EP/S000747/1 ECR
research fund, simulations are supported by the HEC-WSI EP/X035751/1 code
development fund.

Wave Simulation Method Development & Validation

The complex flow environment
of a tidal turbine. [1]

Seabed

roughness/shed . » Tip vortices
vortices from and wake from
underwater upstream turbines
features

UNIVERSITY OF

OXFORD

[] The complex flow environment under

Platform-induced water leads to highly unsteady

loadings on the tidal turbine.
[ Unsteady loading and the inability to
L/ confidently predict unsteady loading

<1 leads to  huge  performance

uncertainty and drives unnecessary
Y 4 overdesign, which all contribute to
the high costs in tidal energy.

1 One of the most challenging aspects
for all ORE systems is to design,
develop and optimise devices
passively or actively interacting with
waves.

Simulation Methodologies Wave Energy Grid Dissipation Study HPC Scaling Tests
[ Solver tools are using OpenFOAM-v2106, waves2foam > Different span and stream resolutions studied: > Based on non-dimensional wave resolution of 1/10,
[2] and stabRAS v1712 [3]. '] Spanwise resolution from 0.1 to 1.0. and non-dimensional rotor resolution of 1/160.
d Water-air interface is modelled by a volume of fluid ] Streamwise resolution from 0.1 to 0.8. > Total cell count 155 million, with 91.6% spent in wave
(VoF) method. » Results show that: interface, and 8.4% in rotor and wake.
O Turbulence model is stabilised k-w SST model. ] Spanwise resolution (and cell aspect ratio) » Scaling test performed on ARCHER2 UK National
 Wave is generated and modelled by the Fenton’s influences the stability of the simulation. Supercomputing facility.
stream wave theory and absorbed by the GABC ] Streamwise resolution shows close relationship  » Results shows that:
method. with numerical dissipation in wave energy. ] Simulation speed scale well up to 1536 cores
[ Simulation methodologies are utilised in another CFD '] 90% of wave energy is maintained with >360 cells (100,000 cells per core).
study on a small-scale experimental scale rotor [4]. per wave-length. 1 Simulation efficiency drops when <100,000 cells
» Constant resolution in wave height direction (10 cells o B e i e s per core.
per wave-height or 976 cells per wave-length, non- 5 oo | HPC speed scaling results
dimensional resolution of 0.1). e i G25; il 1T
> Wave standing frequency of 0.4 Hz, encounter = off bitj—=_Jenre_ | e cuee
frequency of 0.502 Hz. £ ol _ 5 02
« 02 EU-U‘E- oy
z o1 f JI= .E
: L % 2
v 075-1 1.25 alpha.water ()IO-5]1 "J/’ 2 : Ilg:rn:nn.-a:iirmamm-lgu?all:l'.umau:nlutlu:uli:JI = i E Emﬁ
constant 12 Soner- 2
11 B Sparwiss o o
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5 ool Wave energy @ Em
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— 3 o5 dissipation 0.02| = 0.05
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Flow visualisation of wave on a steady current

Wave-rotor Interaction Study

Calla patr Wive-harif

Thrust and Power coefficients of single turbine

» Configurations [5]: e ®  Exp.NoWave LowTurb | v
] The 1.6m-diameter benchmark tidal turbine. 3 A2 ot o o o /\/W\/\/ \/J“
I Tip clearance 0.354 m. A 222 "R ENEEYRAND) T H : - f gﬁ. "
] Current Uy, = 1.0 m/s o : i P cRin, SRV L R0 1P, GHRREE N1 0P ARMA P 4 VERSE O
] Wave conditions: frequency f =0.4Hz, S - FrHR G N N TN e R
height H = 0.10 m i i
] Turbine operation conditions: RPM =72, ol FEETn 0ss Thrust and Power coefficients of 3 blades g
TSR~ 5.0to 7.20 06 2 |
» Experiment and CFD configurations available pElbbebled bbbty el b b ) |
from  https://supergen-ore.net/projects/tidal- 07 i
turbine-benchmarking 085 02 |
r— s J:_, Flow visualisation ﬂ:: THES B4 = e +R4 s 8 Tl R i 6
T e oy Of the benchmark ) '] Rotor performance cycle follow wave encounter
v:::\(\il:I;:rsth:aed‘\’/v::d u::- f_ﬁr—Hﬂ% | periods, while blade performance cycle shows
uniform current iy SEEETH | EE, mixed frequencies of both wave and rotation.
'”; | ] Time-averaged rotor performance under wave
s EEEE condition similar to that without wave.
S S T Y SN T T S S 7 R | Large fluctuations in performance and blade forces

TSR (%)
Time-averaged thrust and power coefficients with their cycle variations

found during wave cycles.
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Supergen Predicting the response of monopile

B
W

Offshore

foundations to storm loading
from laboratory test data

_ . ==& University of
Jamie J. Crispin Y‘? Southampton
j.j-crispin@soton.ac.uk

Department of Civil, Maritime and Environmental Engineering,
University of Southampton (Formerly University of Oxford)

Storm loading on monopiles

Wind and waves loading is highly variable, with loading concentrated in
high intensity storm events.
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Predicting the accumulated rotations and cyclic secant stiffness changes due

to these storm events is critical to designing monopiles for serviceability. .
OmOOOmd

An ideal modelling approach would be calibrated with routinely obtained - (IO COCI T

cyclic laboratory testing but allow predictions of the response to realistic — — OOO00m

storm loading. LI

Fig. 1: The problem

UDCAM-S HARM

The Hyperplastic Accelerated
Ratcheting Model (HARM [2])
was developed at University
of Oxford (Fig. 3).

The Simplified UnDrained Cyclic
Accumulation Model (UDCAM-S [1])
was developed at NGI.

Calibrated using routinely obtained
cyclic laboratory testing (e.g. DSS), so
can be applied to a new material
relatively inexpensively through
generation of cyclic contour diagrams.

The response to realistic
storm loading is modelled
directly with a ratchet
attached to an Iwan model.

\ 0000
However, UDCAM-S is limited to However, HARM is calibrated
sinusoidal cycles, so realistic storms ‘ via higher cost model,
must be idealised to packets of s laboratory and/or field tests

increasing amplitude (see Fig. 2). Fig. 2: Idealised on monopile foundations.

p
,Bre f

R = Rref(

loading

Fig. 3: HARM

Proposed model

In this work, two existing models are combined:
Cyclic contour diagrams are calibrated
against routine element tests.

Use UDCAMS-S to predict monopile
response during sinusoidal loading with

different amplitude and asymmetry.

)
-1.0

Calibrate HARM against the obtained 2O ROOC | & Different amplitude and asymmetry
UDCAM-S results. 0 WSS sinusoldal loading used as input to
| UDCAM-S model
The resulting model allows improved prediction Example 3D cyclic
of the monopile response during realistic storm contour diagram for |
loading from only laboratory test data. OCR=1 Drammen Clay HARM parameters calibrated to
(reproduced from [1]) results of UDCAM-S analyses:
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Fatigue in Offshore Wind Foundations

Comparison of S-N curves from various standards, new regression
analyses, and parameters influencing the size effect in welds

Federico Della Santa, Ali Mehmanparast
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_@}ircu mferentialweld -~
"1 They contain double-V groove welds that can be ground flush (GF) or in as welded condition (AW)

S-N curve AW weld

A power law relates the number of cycles to failure (N¢) to the stress range (Aog):

Background
The most common type of offshore wind turbine foundation is the monopile [1]: < >
1 They are continuously subjected to cyclic loadings (i.e. fatigue) given as stress ranges (Ac) GF weld E
] They are increasing in size: up to 150 mm in wall thickness (T') and 10 m in diameter (D) [2] g
'] They are designed to operate for 20 to 30 years (i.e. they have to withstand more than 107 cycles) /_\ \2‘30

logN; = q —mlogAo

In log-log coordinates this is a straight line (with slope m and intercept g) called S-N curve.

Conditions of interest

Three standards were analysed in air, and seawater with (CP) and without (FC) cathodic protection:
] DNV-RP-C203-2021 (DNV 2021)

] DNV-RP-C203-2024 (DNV 2024) GE C1 c1 C 112

] BS 7608:2014+A1:2015 (BS) AW D Monopile D 90

] EN 1993-1-9:2005:E (EC)

Thickness reduction

All standards reduce fatigue life with the following formula when T > 25 mm (t = T apart for DNV):

Standard S-N curves in air for T =100 mm without length correction
1000

—DNV 2021 D

DNV 2021 m = 3.0 and g = 11.907 —DNV 2024 Monopile t
T —ssconsomamptue 08y = g —mlogho —meclogsg
EC90 m=3.0 and g=11.803 . . ° °
g R R Weld width reduction
— —EC90
?; 00 DNVZOM:&MM% — DNV suggests t = min(T, 14 + 0.66L;) to weaken the thickness reduction at high T values.
g M | \ For an asymmetric double V groove, the weld width L; can be estimated as:
7 u l a" \\ . a 4 a a -----
EC 90 m = 5.0 and g = 15.205 — Z(Ltl + LtZ) sino-=b+Ttan S
DNV 2021 m=5.0 andq = 15.178 2 3 2 i
i+ o e Using a = 60° and b = 3 mm: :
BS var m = 5.0 and g = 14.568 “
10 ForT < 32.5, t=T X 3"
1.00E+04 1.00E+05 1.00E+06 1.00E+07 1.00E+08 1.00E+09 \:}\ * ___________________
Number of cycles to failure, N¢[cycle] For T < 325’ t = 1598 + 051T t;\»
Weld length reduction :
DNV BS EC DNV BS EC DNV BS EC _ _ _
DNV standard suggests a further reduction for long welds (if D = 8.0 m the q is reduced by 0.24):
GF 010 O 0.20 0.10 O - 015 O - .
AW 0.20 0.20 0.20 0.20 0.20 - 0.20 0.20 - logNs = q —mlogAo — mc logﬁ — 0.11log (m)

S-N curve comparison

Fatigue data from literature for AW jointsin air

(1 Standards suggest that in the ultrahigh-cycle fatigue (UHCF) regime (N after the change in slope), 1000
M
thick joints may encounter a further reduction in fatigue life due to the product between m and c. -
— === Lower (L)
1 The most conservative standard in the UHCF is DNV 2021 for GF classes (regardless of thickness § -
ean-tixe
and environment) and thin AW joints in FC, and BS (with variable amplitude loads) for the others. o et et iR 3
< = e | QOWEr-rixe
'] For thin joints, disregarding the curves that display a horizontal asymptote in the UHCF regime, ) L erabiuch bl
100 o
DNV 2024 is the least conservative in all environment apart from AW joints in free corrosion. & )
'] For thick joints, disregarding the curves that display a horizontal asymptote in the UHCF regime, §
DNV 2024 is the least conservative for AW classes, while BS variable amplitude for the GF ones. Z
'] The highest reduction in the allowable fatigue life is for AW joints in the UHCF: comparing plates
25 and 100 mm thick, a reduction up to 75% is obtained [3]. 0

N ewre g ress | onNn ana |yse S 1.00E+04 1.00E+05 1.00E+06 1.00E+07 1.00E+08 1.00E+09

Number of cycles to failure, N¢[cycle]
'] The regression line is lowered by 2 standard deviation (SD) to get 2.3% probability of failure !

| SLIC data brings to m = 3.37 for T = 50 mm AW joints (leading up to 30% increase in N¢) [4]

'] Preliminary results using literature data: stresses were normalised to 25 mm, the slope was fixed
(LF) or not (L) to 3, and the regression line (mean) was lowered by two SD and using t = 50 mm. m 3.00 3.45 3.00 3.00 3.37 1.79 3.00

1 Due to experimental difficulties there is a lack of data at N¢ > 107 especially for high T values. q 12.033 12.891 12.001 11.983 12.786 8.306  11.309
SD 0.20 0.20 0.21 - 0.21 0.43 0.19

ghts/wind-farms-has-the-death-of-the-monopile-been-greatly-exaggerated/
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'] Future Bayesian regression will tell more about slopes and intercepts distributions, and allow the
inclusion of runouts (suspended tests without failure) in the analyses.

Background by https://www.arup.com/insi

e Ed
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Tidal Turbine Benchmarking Project:
Stage Il — Experiments on Unsteady Loading in Waves
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Introduction Experimental Campaigns

e CoTide

waves to provide underlying data. Total of 175 tests performed

> Motivation > Stage |: Steady Flow Experiments, July 2021 - January 2023
] Unsteady loading and the instability to confidently predict unsteady loading and / or ] Turbulence Grid and wave characterization experiments
guantify errors drives unnecessary redundancy and design conservatism. 1 Steady and turbulent flow experiments
] Open access benchmarking datasets are available for the wind energy sector, but little is '] Preliminary wave experiments
available for the tidal energy sector. : .. :
'] Blind prediction campaigns
> Obijectives
: . > Stage Il: Experiments on Unsteady Loading in Waves, March 2025 — 2026
[] Improve accuracy of modelling techniques. ,
: : : : ] Wave characterization e
I Improve confidence in the use of modelling techniques. . . .
[J Quantify modelling errors for different techniques under different loading scenarios. -/ Wave experiments covering 20 wave conditions
. "] Frequency (Hz): 0.225, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5
] Development of novel measurement techniques.
"] Amplitude (m): 0.025, 0.035, 0.05, 0.075, 0.1
> Approaches - . . .
] Conduct large laboratory tests of a highly instrumented tidal turbine in turbulent flow and - Additional steady flow experiments with yawed turbine
L]
L]

Blind prediction campaigns and data dissemination

[]

Conduct a series of community wide (academia and industry) blind prediction exercises with
staged data release, leading to an open access dataset.

Turbine Instrumentation and Experimental Facilities

» Turbine Instrumentation » QinetiQ Towing Tank Facility (270m (L) x 12.2m (W) x 5.4m (D))
] 1.6m diameter rotor / 0.2m diameter nacelle [] Rake of 5-hole Barnacle Probes developed by Bath.
"I Instrumented blades with strain gauges, integrated root bending sensors (100 strain gauges) '] Solid Wave Gauges and Ultrasonic Probes are mounted on the carriage.
'] Torque and Thrust transducers, Shaft rotary encoder for speed and position [] Tow speed 1m/s, Tow length approx. 150m, Settling time ~15mins
~ | 2 4m | N\ R
“ '| 0.225r/R  03r/R 0.6r/R 08r/R  09r/R AW M ; A ' ) . ]
1.6m "
T |« Instrumented Blade 1 ol |
st [ i ;
Strain Gauge Shaft Coupler 3333337 2338 = L,.': ]
Amplifiers Slip Ring Motor ass) 'l . )
syl = ! Gl (it o
= Dp 4 " W :: o
=, ] | L2 L3 Lt
? 1 |
q [ J
: * X
2 F U4 .
?’o. \ . =3I % Ultrasonic Probe 1
HUb Wlth Torque / ThrUSt ROtary GearbOX Transducers | \ y * Y 4 d “Jh:‘m“l:ﬂ j
Integrated Root Transducer Encoder T || s 't 3 8 ‘ - r
Bending Sensors RN (P <P\
v Rp -p.T) (Rp5al) xim)
Commeon cantre hole y l
L Highly Instrumented Turbine Baldes Instrumented with Strain Gauges ) | 5-Hole Unsteady Barnacle Probe Wave Gauge and Ultrasonic Probe Locations )

Wave Data Analysis

> Wave Elevation Comparison: With and Without Turbine > Reliability of Wave Elevation Measurements » Wave Repeatability in Turbine Experiments
[1 Wave amplitudes remain consistent in clean wave cycles. ] Wave Gauge (WG) and the Ultrasonic Probe (UP) show [] Multiple test repeats show nearly identical waveforms.
1 The dominant wave frequencies are highly stable, with excellent agreement in both amplitude and phase. [ The amplitude envelopes of all four tests are very
minimal variation observed between tests. '] The overall spectral shape is consistent, and UP signal closely aligned over the entire test duration. Slight
1 The installed turbine has negligible influence on the shows slightly more noise at higher frequencies. variations may be observed, but they remain within a
energy content of both the incident and reflected wave "1 These results confirm the reliability and consistency small range (Ymm scale).
components, but it introduces a slight increase in of wave elevation measurements. [] These results confirm excellent repeatability in wave
energy at higher frequencies, due to flow disturbances '] The energy of the reflected waves is significantly lower generation and measurement, even with the turbine
or turbulence induced by the rotating turbine. than that of the incident waves in this case. installed.
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Tidal Resource Assessment for

OXFORD the Co-Tide Project
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INTRODUCTION METHODOLOGY

" Much of the global tidal current energy resource lies in the A
accelerated flows along narrow tidal channels that have the potential - — —
to produce 10-1000s of MW of electricity. S~ e
However, realising 100MW of a channel's potential is much more Tidal velocity U, . %
complex than just installing 100 1-MW turbines and, more g Uc %
importantly, not all the tidal energy can be extracted due to different — - ’%’:’—QTUOO
real constraints! - T T--
Tidal Resource Assessment evaluates the potential of a tidal site for T %‘ T~ e _
energy extraction using turbines arrays, providing insights into the —
feasibility and value of planning and deploying tidal energy projects. 7 o o o

The aim is to develop an analytical framework for quick tidal (a) Top-down view of a row of turbines in a tidal channel

resource assessment.
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(b) Cross-sectional view of tidal turbines
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(Momentum balance)
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. Array-scale model \
! (Actuator disc theory)
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\ | Turbine-scale model |
A\ (Thrust modelling) .
N

“m““““lnnnm“mnm““m“““““““““Hln (c) Using idea of scale ser’)a.ration to model the system separately

at different scales and then couple together through net thrust
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O How does the 1-D analytical framework compare with 2-D numerical
simulations?

O Can this framework be extended to an array of multiple rows of turbines and

different channel geometries? 3] Garrett, C., & Cummins, P. (2007). The efficiency of a turbine in a tidal channel.

4] Image Credit: Andrey Armyagov/Shutterstock.com
5] Image Credit: https://www.power-technology.com/projects/pentland-firth-tidal-
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Distributed Optical Fibre Sensing for Monitoring of Large
Bending Deformations of Subsea Power Cables
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Introduction

Subsea power cables are critical assets for offshore renewable energy systems.
Failures of subsea power cables lead to significant costs due to long outage
times and high repair expenses [1]. The cable failures due to external mechanical
loads during transportation, installation and operation are critical and condition
monitoring of the cables can benefit to prevent unexpected damages [2]. This
research intends to monitor the large bending deformations of the power cables

using embedded optical fibre sensors.

In the initial stage of the research, a 6 m long and 40 mm diameter Polybutylene
conduit (hollow) was used for experimental analysis of the bending behaviours of
long cylindrical members subjected to large bending deformations. 125 um
diameter single mode optical fibres were attached to the outer surface of the
Polybutylene conduit in two configurations, in parallel to the axis of the conduit

and in helical windings around the conduit.

Optical Fibres

Optical Fibres

Mid Plane 0°

-

/ | 120°

Mid Plane

In parallel to the axis of the conduit

Figure 1: Configurations of the optical fibre attached to the outer surface of the
Polybutylene conduit

In helical windings around the conduit

A custom-made test rig was used to bend the conduit under 3-point bending and
circular bending arrangements. The span for all the tests was 5 m. Both tests
were conducted for five levels of deformations. The strain changes were
measured using a VIAVI FTH-9000 Brillouin optical time domain reflectometer

(BOTDR).

Table 1: Deformation magnitude levels of the bending tests

Midspan Displacements (MSD) of the 3 Point Bending Test 1.34m 0.76 m 0.55m 0.43m 0.35m

Bending Radiuses (BR) of the Circular Bending Test 3m 4.5m 6m 7.5m 9m

3 Point Bending

Circular Bending

Figure 2: Bending configurations on the testrig

A series of 3 point bending tests were conducted to study the bending direction
by changing the mid plane crossing location of the optical fibre sensor. The top
dead centre of the mid plane was considered as 0° and CW rotational angles of

30°, 60°, 90°, 120°, 150° and 180° were considered for the experiment.

The strain values along the fibre were proportional to the magnitude of the deformation.
The strain patterns distinguish between the shapes of a 3-point bend and a circular bend.

The strain measured by the optical fibre sensors at different mid plane crossing locations

showed proportional magnitudes of tension and compression relative to the direction of

Optical fibre in helical
windings around the conduit

the measured bending.

Optical fibre in parallel to the
axis of the conduit

3 Point Bending

3 Point Bending
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Figure 3: Strain data along the Polybutylene conduit under different magnitudes of the

deformation.
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Figure 4: Strain data along the Polybutylene conduit measured by the optical fibre
sensors with different mid plane crossing locations denoted by the rotational angle.

Conclusion and Future Directions

Employing three or more optical fibre sensors around a cylindrical member in parallel or
helical configurations can analysis the magnitude and direction of the member subjected
to a large bending deformation. Optical fibre embedded cylindrical sensing cables are
propose to be integrated within three-core power cables to monitor and predict the

bending throughout the different stages of their lifecycle.
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Data-Driven 1D Design Model for Monopile Foundations
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1.Introduction 2.0bjectives
| The design of monopile foundations for offshore wind turbines "I Develop a 1D model to predict the monotonic lateral response of monopiles in layered
(OWTs) is governed by lateral loading from wind, waves, and soils.
currents, generating large overturning moments. I Calibrate the 1D model using soil reaction curve data from layered soil analyses
'] Conventional design approaches model the monopile as a 1D beam I Capture layer-to-layer interactions and enable rapid site-wide predictions.
with non-linear Winkler springs but often neglect interactions '] Account for variations in soil parameters (e.g., strength, stiffness) and layer
between adjacent soil layers in layered soils. thickness across the wind farm.

(] Soil stratification significantly affects lateral response, and ignoring

_ . ) . Key stages followed to develop a data-driven 1D design model for layered soils
it can lead to inaccurate, conservative, or even unsafe designs.
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7] Calibration Soil reaction Machine learning Prediction:
H ,ﬂ‘ 3D FEA curves database model AR Riclull Backbone curve

[

v Waves
» CUFFBAE
£y
Monapile s Ground level
[T

Monopile Foundation [4] e Y

Loads applied on the Pisa 1D FE Framework [2]
OWT substructure Current Study Setup:

[Software: PLAXIS 3D [1]
[Clay Model: NGI-ADP
'Sand Model: HS-Small

i (A) Identification & Calibration Process:
Parametrise the problem to reduce the number of required 3D FEA.
_ —_— — Define a calibration space to capture spatial variability across OWF:
Identlfy OWT il | :Irreunum-dt'ﬂw Land .
. . ‘ Analysed Pile geometry
locations with [ ] sufctay : . L
similar soil | layered soil 'Soil parameters variation e o
) ’ . configuration ‘Layer thickness range Site Wise Variation in Layered
configuration | Bl ey Thickness for Configuration A
5. Soil Reaction Curve Database
For each calibration 3D FEA, the following soil reaction components are extracted:
Identify site- 1) Distributed lateral reaction 2) Distributed moment 3) Base horizontal force 4) Base moment
wise soll Soil reacti lised to a dimensionless form!
e oil reaction curves are normalised to a dimensionless form
variation Spline-Based Representation
‘Normalised curves follow: y = g(t1)
——  minimum z,, minimum G,, 5, Dg, K, ceesenes miRIMUM 2y, Maximum G, 5., Dg, K, where: &L = normalised diSpIacement/rOtation, _')_7= normalised |Oad/m0ment
average z,;, minimum G, 5., D, K, average zy, maximum G, s,, Dy, K, 'Each curve is defined by 8 knot points, forming the basis of the data-driven model
— AKIMUM 2y, Minimum Gy, 5, D K cereenes maximum 2., maximum Gg, 5, Dg, K,

knot-point u 0O |/0.00004 | 0.0001 | 0.001 | 0.004 | 0.01 | 0.03 0.06 0.1
1Nt arameters y y Y V V V V Vv Vv
6. Training Features P y | 0| ¥ V2 Vs | Yo | Vs | Vs | V7 | Vs

A PCHIP interpolation scheme [3] ensures smooth transitions between knots.

(L/D): pile slenderness
o o ﬂ" -'DRJ G ELI ]
(z/L): depth variation = o z
Oy Sus Go Z12
' ' .
(GO/O- ‘U)l (Su/o- v); (DR) SOll Snp L
pe &R Mg Z13
parameters
. e B e - o
(z11/L): layer thickness e = = PCHIP spline soil reaction curve for use in the data-driven 1D design mode

Semielenen s S R S
SEiminiosan e s

Layered Soil Configuration A

8. Design Scenario — 1D Model Predictions

1D model tested E - 4

_ _ on unseen conditions:
I A separate Gaussian process regression |  95% Confidence Interval F 1 Pile geometries De=55% I [Tza=6m ]
. . 251 = GPR pred s San -
(GI.:’R)-mc;]del [|5-] is trained for each knot sand ,, | ® Teining data 7 Soil parameters T §m=mm
pointin the spline. ' | Layer thicknesses Rt
. D =90% Z;3=13m

'] GPR uses a zero mean function and 1D model prediction

a Matérn (v = 5/2) + White Noise kernel. Ground-level response: su%:mpa‘rsm
] The dataset for each knot point is '] Load—displacement

randomly split, with 80% used for clay [ Moment—rotation Design scenario Load-displacement response Bending moments profile

training and 20% reserved for testing Example GPR outputs Bending moments profile v Validated against 3D FEA — close agreement observed
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Intelligent Fault-Tolerant Control of Offshore Wind Turbines via

Deep Reinforcement Learning

Dr. Hongyang Dong?! anc
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Figure 1. Offshore wind turbine control system with
actuator and sensor faults [1].
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Measurements
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Credits: Ideol / V. Joncheray

Figure 2. A brief illustration
of the proposed control strategy [1].
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Simulation and Discussion
» An incremental model to capture potential online system changes with real-time measurements.

> A critic-actor RL structure to achieve high-performance fault-tolerant control.

> Better performance than commonly-used methods (incl. Pl and MPC) under faulty conditions.
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Figure 3. Generator torques under different controllers subject
to the offset fault (+5000 N m) — IHDP is the proposed method,
which leads to smallest errors [1].
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Figure 4. Control performance of different controllers under
partial failure sensors and parameter uncertainties — I[HDP is
the proposed method, which leads to best performance [1]./
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Adapting Building-Structure Bolt Design Practices
for Offshore Wind Applications

Xuemel Lin
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Advancing Floating Offshore Wind Turbine (FOWT) Stability and Performance through
Coupled Aero-Hydro-Mooring Analysis

Rizwan Haider 22, Wei Shi ®, Zaibin Lin ¢
aSchool of Hydraulic Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian, 116024, China

b State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, China
¢School of Engineering, University of Aberdeen, King's College, Aberdeen, AB24 3UE, the UK

Introduction Key Results

Context: FOWTs harness deep-sea wind energy but face challenges from COG Impact: Lower COG reduces pitch motion by 20% and mooring tension

coupled aerodynamic, hydrodynamic, and mooring dynamics. by 8.6%, improving FOWT stability but also fluctuating the power output.
Problem: Existing models often oversimplify interactions, limiting accuracy

Table 1: Environmental conditions and load cases for the FOWT

in predicting stability and efficiency. . p——
Research Gap: Fully coupled simulations integrating real-world platform _____________ Environmental conditons

motions and mooring dynamics are computationally demanding and Inflow Wind Wave Wave Height | Wave Period | Rotor Speed
underexplored. Speed (m/s) |amplitude (m) (m) (s) (rpm)
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Figure 4: Pitch, heave, and mooring tension under cases LC1-4.
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Figure 2: Comparisons for the platform motion response and power Mean power output was increased by 0.9% due to improved platform
under the case LC1 in Table 1 stability.
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Origami-Enhanced Dielectric Fluid Generator for Wave Energy Conversion
Chenying Liul, Maozhou Meng?*, Jingyi Yang® 3, Liang Hel, and Zhong Youl:~

! Department of Engineering Science, University of Oxford

2 School of Engineering, Computing and Mathematics, University of Plymouth
3 Singapore Institute of Manufacturing Technology, A*STAR

" Contact: maozhou.meng@plymouth.ox.ac.uk and zhong.you@eng.ox.ac.uk

Ocean waves offer a vast, largely Open Close
untapped, and sustainable energy <: :> :> WEC <:
resource. In the UK, wave energy has the

potential to generate up to 30 TWh/year, Origami-based

about 10% of nation’s electricity demand. DIEC EiiEly

Dielectric elastomer generators (DEG) and dielectric fluid
generators (DFG) use mechanically variable capacitors to convert
wave motions into electricity. A parallel-plate capacitance is
EoErA .

d
where g, is vacuum permittivity and &, is relative permittivity.

m Soft electrode ) m Rigid electrode ) v’ Easily stackable for scalable arrays in wave energy converters.

Seabed

4 * CT under <L / - CT under
: v’ Stress isol flexible joints further enhances fatigue life.
<}:| dI e |:> stretch Dielectric fluid Eoml:ress,on\/ Stress isolated to flexible joints further enhances fatigue life
e Fatigue X * Low fatigue . : . ..
_ v J PG 7S \Dielectricﬁlm y v Precise control of electrode displacement improves efficiency.

Step 1. Preparation Step 2. Charging
5M 1 S2
( & \ ( High voItage.\ 1" «—p}
> P+ 100G
T oA ] Hv () : == LT
Core = Crax » Vorg < HV =
\ DFG max DFG < j e Net energy \ VDFG = HV; QDFG T j \ 10M <V>

* Electrode size: 60 X 60 mm?

* Electrode material: copper and conductive silicone

* Dielectric film: polyimide (¢, = 3.1, Ez5 = 200 MV/m)
* Dielectric fluid 1: air (¢, = 1, Ezg = 3 MV/m)

* Dielectric fluid 2: oil (¢, = 3,E 5 = 45 MV /m)

VDFG (kV)
w
N
\\
\
w
[T

Step 4. Return Step 3. Harvesting

QDFG (UC) ( \
4 4 ) 4 %"Ner bank (C;) ) Step 1 = S1 and S2 open, high voltage (HV) on, DFG idle
++ + ++ + ,
—>—T Step 2 = S1 and S2 close, DFG is charged to HV
4 N R — Step 3 = S1 opens and S2 closes, DFG upper electrode lifts up
dl Coo T Voo | = Step 4 = S1 and S2 open, DFG upper electrode lowers down
\ » ~DFG ' YDFG ) U TI CDFG ‘Ll VDFG Tl QDFGJ \ j
( Electrode displacement (mm) \ DFG in air
" 3 Step 1 StepZ | Stelp3 SFep4 Step1 :
Test rig ---- Controller --- DAQ -] : : jeosne 5 :
S i i v =4.45 mm/s i i i
: 1r ' ' d=25mm ! 1 '
I ' ' ! ! '
! 0 — . : :
HIRIEET E 0 | 015 1 115 él 2 5l 3
actuator HV = 2 kV i | | Time (s)
: C,=0.26 nF : Air oil Electrical breakdown and corona
1 1 1 . . . .
E E E C1 voltage (kV) discharge can readily occur in air.
4r Epap_air = 1.11 mJ | DFG in Oil
Energy Harvesting Circuit ] 200 m
. 2 3.98kV 20
ot LT {10
3 |
T|me (s) -
Loadcell (N)
Step 1 Step2 Step 3 Step4 Step 1’ ] L .
100 : . ' | : ) The higher permittivity and breakdown strength of oil
: ; i : % help prevent ionisation and suppress corona
O 4 | ! ! il | discharge, boosting output energy by 85.6%. However,
| I I i Emech_air = .95 mJ
. N | | Eecn_oil = 82.92 mJ its high viscosity increases mechanical energy demand
Actuatl.on frequency (f) and speed (v? are t-uneable to match wave —1000 0. . L 5 5 ] per cycle, reducing conversion efficiency from 14.0%
dynamics. Electrode displacement (d) is precisely controlled. \ Time (SU to 2.5%. Speed control can help improve efficiency.
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Wide-Bandgap Power Electronics Topologies for Wave
Energy Dielectric Elastomer/Fluid Generators

Sebastian Neira Castillo — s.neira@ed.ac.uk

Motivation: Advance the technology readiness level of Dielectric Elastomer Generator systems by

developing wide-bandgap power converters

] Dielectric Elastomer Generators (DEGs) and Dielectric Fluid Generators

(DFGs) offer high energy densities and low mechanical complexity,& s
particularly attractive for marine environments. _
e
] Power take-off systems require bidirectional power capabilities and to A
withstand efficiently high peak power levels (several kW), to perform £5
the charge/discharge process, but low average output power -
I

[ Gallium Nitride (GaN) power electronics offer significant advantages g —
over traditional silicon-based devices, including higher efficiency, Cmin V2 Cmax V1
lower losses, and increased power density.

The project will result in the implementation of a 5-kW laboratory prototype of a wide-bandgap

semiconductor-based DC-DC converter, designhed for the studied DEG specifications.

The main goal of the proposed research is to develop high-voltage high-frequency DC-DC power converter
topologies using wide-bandgap semiconductors, such as GaN, capable of performing the power take off process in
an efficient and reliable manner for future wave energy systems.

The specific objectives to achieve the outlined goal are defined as follows:

Objective 1: Conceptualisation and design of a 10 kV capable DC-DC converter using GaN devices, currently rated
for 650V, using modular strategies.

Objective 2: Analysis and construction of resonant links and their respective control and modulation strategies to
maximise the efficiency of the charge/discharge process of the DEG given the high peak power levels.

Objective 3: Implementation of a Power Hardware-in-the-loop system emulating the dynamics of the DEG for
validating the operation of the developed power converters.

-----------------------------------------------------------------------------------------------------------------------------------
[ 1

;".03: Power Hardware-in-the-loop DEG system

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

DEG Real-Time : DEG-side High-Frequency Collector-side _
Emulator . Power Electronics Link Power Electronics :
n T I i . T —

DC Power Supply

o i i

01/2: DC-DC converter using high-
frequency link :

Conclusions & Future Work

] Resonant Isolated DC-DC converters based on GaN technology offer enhanced efficiency to perform priming and
energy harvesting processes of DEGs and DFGs.

| Power hardware in the loop strategy will allow validating a 5 kW prototype, with the DEG/DFG dynamic
implemented in a real-time simulator.

] The developed power converter will be validated at the University of Edinburgh Power Conversion laboratory
with capability for testing devices up to 2000 V and 2000 A.

The author would like to acknowledge the support of Supergen ORE Hub ECR Research Funding
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1. AIRBORNE WIND ENERGY

100 kw
16 m wingspan
5 tons

Operating altitude:
300-700 m
T
6 ft man i -

| Easy transport

i

1~

2

100 kW
26 m diameter

% 50 tons

Hub height:
30m

Use in remote areas, low-wind regions, disaster relief,
military deployment (in testing with Dutch army)

[124h operation

Strong and consistent wind at high altitudes

1 Reduced life cycle carbon footprint
60% lower cumulative energy demand (Hagen, 2023)

] Similar energy cost to wind turbines (Malz, 2020)

J

2. THIS FELLOWSHIP

CHALLENGE: realising theoretical predictions

] Optimal flight paths established.

1 How can the aircraft follow that path
automatically?

RESULTS

] Derived a general control framework to
guide the aircraft along a desired path.

1 Novelty: use of a non-static reference

frame. Works with simple Pl controller.

] Eliminated the angle-of-attack during s
power production.

NEXT STEPS

o

] Verify the theoretical predictions using

simulations and potentially test flights.

.
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Multi-axis motion analysis of TALOS Wave [ ancaster
Energy Converter under realistic sea states

Charikleia L.G. Oikonomou!, Wanan Sheng?, Gerasimos Korres!, George Aggidis?

1. Hellenic Centre for Marine Research - HCMR, Greece

2. Renewable Energy Group, Energy Engineering, Lancaster University
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Methodology
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Introduction/Motivation
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TALOS, developed at Lancaster University, Is a novel wave
energy converter (WEC) designed to extract power from
multiple motion modes—surge, heave, and pitch—via a multi-
axis omni-directional Power-Take-Off (PTO) system.
This study evaluates its performance under four representative
wave climates using both frequency-domain and stochastic
modeling, guiding device optimisation for deployment.
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Hydrodynamic analysis was conducted using both frequency-
semi-empirical
Bretschneider wave spectrum was modelled to represent realistic
sea states (wave data were retrieved from the Copernicus Marine
Service). Key parameters included significant wave height and
energy period. Response Amplitude Operators (RAOs) and
standard deviations were computed using panel
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methods

(WAMIT) and statistical estimations to assess TALOS motion.

Results and discussion ]

Stochastic model results: Standard deviation of motion response per location
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1 By analysing the most probable sea states from wave
reanalysis data, we determined ideal adjustments to
TALOS's width for resonance-based tuning using the
Froude scaling law.

1 These recommendations aim to align the device's
heave resonance with the most common incoming wave
periods at each location

Original paper:
Oikonomou, C. L. G., Sheng, W., Korres, G., & Aggidis, G. (2023).
Operating of TALOS wave energy converter in different wave
climates. Paper presented at the ISOPE International Ocean and
Polar Engineering Conference. (Paper No. ISOPE-1-23-094)
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Wind Energy Resource

Vared Sowed §F b |1%5 Bany . Leang giwo diew Fosa

WTG @ rated =47 %/

WTG @ downtime = 6.4%

15-MW WTG capacity factor = 64.5%
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70% of H2 downtime windows last less than 12 hrs
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Conclusions & Future work
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Decentralised Floating Wind-H. System

= 15-MW IEA RWT

= Integrated H facilities

= ERA5 hindcast metocean
data (2002 -2021)

= AEKSs typical operational
requirements: rated capacity
at 80% of rated WT power,
minimum load of 20% rated

capacity.

Operational Profile of H. facility

H2 @ downtime =21%

12-MW AEK oper. factor = 83.1% (wrt WT gen. power)

Complementary ORE potential

<«
= Required complementary power I

(15-MW WTG & 12-MW AEK):

|

i

0.20 *12.0=2.4 MW I
|
Thus:
F |

= 10 WECs (~250 kW), or i
= 02 tidaldevices (~1.2 MW)

i
I
i
= Fuel cells? i
I
]

H. @ rated =52%

FEp——

| ~80% of all sea states
have Hs <2.5m

i
downtime ~ 1.2%

4__

v" Number of shutdown/start-up events are critical for H, production feasibility assessment;

v' Downtime wind energy persistence diagrams evidence the need to complementary energy resources;
v' Wave energy seems to be a promising complementary resource: power and persistence;
(@]
(@]

Investigate wind-wave joint occurrences and correlation;

Investigate WECs and other ORE devices suitable for WTG & AEK downtime windows.
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Numerical Simulation of Laterally Loaded Monopiles for Offshore
Wind Turbines using an Advanced Hyperplasticity Model
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B MOTIVATION

'] About 25-35% of the Levelised Cost of Electricity(LCOE) of modern wind farms is
incurred in the operation and maintenance (OPEX) of the wind farms. A more data-
driven approach can be useful in more precise costs estimation and decreasing LCOE.

] Lack of data for wind turbine failures and repairs gives rise to uncertainty in case of
wind turbines makes it harder to calculate the hyperparameters for the prior.

] Bayesian parameter estimation, utilizing prior knowledge and observed data,
provides a robust framework for modelling the failure rates of wind turbines, essential
for optimizing performance and reducing costs.

0o

How can sensory data be used to
optimise installation and operation
and maintenance procedures of a wind
farm using statistical analysis?

How can uncertainties be addressed in
case of a Bayesian estimation

METHODOLOGY

Sensory Data [—{ Processed Data

of the wind turbines at this stage.

Statistical Model
| SCADA data, and turbine logs are used for this project. The SCADA data
consists of the SCADA signals like generator RPM, total active power,

etc. This data needs to be converted into times to failure and times to
repair for modelling.

| The power production from real time SCADA Data and wind turbine’s
wind vs power curve are used to determine times to failure and repair

I A new statistical model characterising the times to failure or number of
failures per year for each turbine is prepared to understand the impact
of the environment on the wind turbines' failures. The parameter
estimation for the model is carried out by using Bayesian inference and
the results are compared with maximum likelihood estimation.

o

POSTERIOR INFERENCE

Weibull distribution:
T; | A, k~ Weibull(A, k)

T, | A~ Weibull(A, 1)

prior predictive distribution is achieved.

data from posterior distribution effectively.

Where A~ InverseGamma([LL), and for k ~ Uniform(L) [L).

________________________________________________________________________________________________________________________________________________________

0

{Using Current Data} Let Ty,..., T, be i.i.d. random variables representing
wind turbine failure times, with density P(t; |8). Here, model 1 assumes a

Model 2 assumes an exponential distribution (Weibull with k=1):

Hyperparameter Selection: We assume that k and A are a priori indepen-
: “dent. Once initial hyperparameters are chosen according to the values
- obtained from Ref [2], they are iteratively adjusted until a reasonable

________________________________________________________________________________________________________________________________________________________

Dataset for analysis for this section is sourced from EDP Renewables [3],
encompassing SCADA and log data from a wind farm of 16 turbines, each
rated at 2MW, with a focus on a subset of 5 turbines. Here, within Bayesian
framework, Markov Chain Monte Carlo algorithms are used for sampling

k (Expo) A (Expo) |k (Weibull) | A (Weibull)
MLE 1 21.03 0.87 19.71
Bayesian Estimation 1 21.7 0.84 20.31

'Model Validation: The data can be divided into two parts: test data and
training data. The training data is used to train the statistical model and to
-obtain parameters for the curve. The test data, which represents around |
' 20% of the total dataset, is used to test the performance of the model
based on parameters obtained from the training dataset.

utilisation?
PRIOR ELICITATION 4 B

{Using Historical data} For a homogeneous process, let N(t) ~
Po(tA) be the number of wind turbine failures in the time t, with
failure rate A~ Gamma([LL). The prior predictive distribution is:

L]
N(t) | L[ NB(DDT[?

The expectation and variance of N(t) given LI LIl [lare:

E(N(t)) = D—é] and Var(N(t)) = t+—DDE(N(t))

Prior elicitation can be done if the expectation and variance are

known. The data below is obtained from [2].
Years t Number Failures per turbine | Number of failures (N(t))
1 10.75 2375.75
2 10.18 2249.78
3 11.01 2433.21
4 9.41 2079.61
5 7.44 1644.24
6 13.32 2943.72
7 9.91 2190.11
3 7.94 1754.74

Based on the failure data for offshore wind turbines over 8 years
for 1,768 turbine hours, as shown in Table 1, the hyperparamete-
rs [land [Jof the prior Gamma distribution were estimated for the
failure rate (A). Using the sample variance of 165,993.8 and the
total number of failures 17,671.16 for N(t = 1768 turbine years)
and the values for N(t =221), we obtain [J=29.8 and [1=2.98. The
value of variance can also be inflated if the sample variance does
not fully represent the uncertainty of the data. These values are
used to visualize the prior predictive distribution (Negative Bino-
mial) and the Gamma prior distribution. This analysis applies only

to wind farms in similar situations as the data.

TAKE AWAYS

This research focuses on determining a more generalised
statistical model pertaining to times to failure (and repair) in |
offshore wind turbines, leading to better estimations of impacts of
' failure/repairs on key performance indicators. |
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Enhancing Marine Concrete
Performance: Fatigue Mechanics of
Polymer-Modified Concrete

Concrete challenges in the marine environment What is polymer modified concrete (PMC)

9 Gt arem B B

| PMC is a cement-based composite where polymers Enhancement of PMC in current state of research
, (e.g., latex, epoxy) are added to improve mechanical 4000
. aps ! Crarge Passed
properties, durability, or workability compared to 350 1 ”i’"
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Aims Objectives

Find the optimal

atio of aitable. Test and analyze strength and

fatigue properties of PMC

polymer
5 . Using the modified GTN model
Development of a modified
.+ Gurson-Tvergaard-Needleman
(| 1 | (GTN) model for concrete fatigue. | Consideration of marine environmental
i b1 fact
PMC fatigue 4 kgl The results do not match
performance an some of the literature and
more experiments are
needed

_________________________ Numerical simulation of PMC
; fatigue behavior
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Future fatigue test with wet/dry circle Numerical simulations on meso-structure
of PMC under fatigue

Random Aggregate Modeling based on Monte Carlo method
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Numerical simulations on meso-structure Damage factor calculation with

of PMC asymptotic homogenization method
Gurson-Tvergaard-Needleman (GTN) model
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Impact of support structure modelling methods in actuator
line method large eddy simulations of wind turbine wakes
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Influence of nacelle and tower on wind energy aerodynamics

4 N\

/Rotor Loads o f\lear wake A Far wake

] Tower shadow;  *® ] Coherent I Far wake asymmetry [1];

I Instantaneous ¢ — o | | |structures; -/ Increased turbulence. )

decrease in aerofoil °° | |1 Breakdown ‘ A

performance. = of tip vortices; Farm Scale | |

*b5 02w s o5 10| |[] Hub vortex [2]. ]I Wake meandering [2]; |

N L /(0 Influence on the farm resistance [3],

| ? How should we numerically model the support structure in actuator line method large eddy simulations?

Meshed representation ) (Cell blocking method " (“Actuator Line/Disc Method A
L] 20<y+<300; I Momentum "JActuator disc nacelle,
(] Analytical source; cd = 0.3:
wall function ] No penetration
condition; _IActuator line tower, E
] Meshless method:; Cd =1.2; .
1 [4]. St = 0.2. [5]

\_

Instantaneous Flow Mean flow,

far wake, x/D = 8

Mean flow,
near wake, x/D =1

i) 4
- ——-—h.--‘_# ‘df&‘f_— s )
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Method Rotor Thrust [N] Support Structure Drag [N]

No support structure 33.59 0

Mesh 33.59 1.59
Cell-block 33.43 3.45
Actuators 33.55 1.19

Conclusion

| Three support structure modelling methods were tested
for the NTNU lab-scale rotor [1] with diameter D = 1 m using
actuator line method large eddy simulations.

] The meshed representation provides the best agreement
with experiments, capturing both flow behaviour and magnitude.
'] The cell-blocking method reproduces asymmetric behaviour
but overstates TKE production at the near wake.

I The actuator method understates the effect of the support
structure and therefore does not induce far wake asymmetries.

'] Having tested the methods for a lab-scale rotor for which
experimental data are available, future work will aim to assess the
impact of the support structure in the utility scale.

Comparison With Experiments No model Meshed O Experiment |
x/D=1 x/D=3 x/D=35 x/D=1 x/D=3 x/D=35
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