Supergen ORE Hub Assembly 2022 BEIS Presentation

19th January 2022

Yannis Dragotis and Tomasz Ligas

Renewable Energy Innovation Delivery

BEIS - Science and Innovation for Climate and Energy Directorate

Net Zero Innovation Portfolio (NZIP)

Prime Minister's 10 Point Plan

10 Point Plan:

- 10 priority areas
- Point 1: Advancing Offshore Wind
- Critical source of renewable energy
- Current capacity at approx. 10GW
- **40GW** of offshore wind by 2030 (incl. **1GW** of Floating offshore wind)
- Encourage private investment in UK
- Create UK jobs in the sector
- Increase of UK content

Offshore Wind

Key Programmes:

- Floating Offshore Wind
- Windfarm Mitigation for UK Air Defence: Phase 2
- UK Manufacturing Technology for Next generation Wind Turbines: Composites Phase 2

- At least £17.5m in Grants for projects
- Supports the development of innovative floating offshore wind technologies
- Key tech areas: a) Moorings b) Foundations c) Dynamic cables
- Announcement will follow

• £2m over 4 years

- Industry stakeholder academic and supply chain partnerships
- Accelerating the commercialisation of Floating Offshore Wind – to deliver net zero and drive economic growth
- <u>https://ore.catapult.org.uk/what-we-do/innovation/fowcoe/</u>

Windfarm Mitigation for UK Air Defence

CHALLENGE

- 40GW offshore wind in 2030
- Wind turbines affect MoD's air defence radar capability
- Windfarm Mitigation key risk to accelerating deployment
- Solution to enable co-existence of radar and windfarms

Windfarm Mitigation for UK Air Defence

BEIS APPROACH

- Joint Windfarm Mitigation Task Force (MoD/Industry/BEIS)
- SICE Innovation challenge
 - Defence and Security Accelerator (DASA)
 - Defence Science and Technology Laboratory (dstl)

Defence and Security Accelerator

7 Supergen ORE Hub Assembly 2022 BEIS Presentation

Windfarm Mitigation for UK Air Defence

PHASE 1 FEASABILITY £2.1M; Oct'20-Mar'21

- Short studies assessing the feasibility of novel methods to allow coexistence of windfarms and radar
- 6 projects from 18
- 4 distinct challenges

PHASE 2 DE-RISKING £3.8M; Oct'21-Feb'23

- Build on Ph1; progress the technologies to a higher TRL; inform Ph3
- 7 projects from 20
- Overarching challenge: Maintain effective surveillance of airspace in the presence of larger windfarms

PHASE 3 DEMONSTRATION ???

- All options on the table
- Informed by:
 - Phase 2
 - Joint Windfarm Mitigation Task Force work
- Further collaboration with MoD and industry

Organisation	Objective
ADVANCED MATERIAL DEVELOPMENT	 To introduce advanced nano-scale Radar Absorbing Material (nRAM) at the manufacturing stage of wind turbines, ensuring RF absorption is integrated into the base materials. Aiming to develop prototype turbine blade and perform mechanical and radar tests Partnering with Gurit and University of Sussex
TRELLEBORG	 To deliver Frame (Full Radar Absorbing Materials and Equipment) to mitigate wind turbine radar interference. Trelleborg's proprietary radar absorbing system which can be embedded into a resin and ultimately used to manufacture wind turbine blades Aiming to manufacture a blade prototype for RCS and mechanical validation testing and mechanical testing Working with NCC, OREC and University of Loughborough
	 A solution to develop a novel metasurface manufacturing method for the mitigation of radar clutter caused by windfarms. Demonstrated feasibility of reducing RCS in Phase 1 Aiming to build a metasurface demonstrator Working with OREC and University of Exeter

Department for Business, Energy & Industrial Strategy

Gel coat(s)

Ť

E2005425.tif

Supergen ORE Hub Assembly 2022 BEIS Presentation 9

Organisation	Objective	
A V E I L L A N T A Thales company	 To develop a solution to synchronise two remote Holographic radars with which Thales will demonstrate synchronised multi-static staring radar (MSAR). Builds on Phase 1 and looking to demonstrate a synchronisation of two Aveillant Holographic radars against UAVs or small aircraft 	
THALES	 To design and demonstrate MSAR systems using a validated synthetic environment, to provide continuous all-weather air surveillance in and around windfarms. Complements the Aveillant project and looking at a different component of the future solution Aim is to perform system design in a synthetic environment, and develop processing techniques to provide clear guidance on the suitability of different multistatic radar geometries and designs 	vironment, to provide nent of the future velop processing nultistatic radar
SAAB	 To incorporate Machine Learning (ML) and Artificial Intelligence (AI) techniques into air defence radar, providing a trusted air surveillance picture in noisy and cluttered environments. Phase 2 builds on Phase 1 and will further develop the ML and AI and demonstrate the algorithm across 2 windfarms in Denmark and Sweden via live flights 	
LiveLink	 Alternative Surveillance System consisting of RF, acoustic, optical sensors utilising signal processing, particle filter analysis and AI capability to infill MoD Air Surveillance Aiming to install sensors on wind turbines and conduct flight trials to prove the system capabilities 	IMAGE COURTESY OF S

Wind turbine UAV body

UAV Rotor

AAB

IMAGES COURTESY OF THALES

10 Supergen ORE Hub Assembly 2022 BEIS Presentation

UK Manufacturing Technology for Next generation Wind Turbines: Composites Phase 2

UK Manufacturing Technology for Next generation Wind Turbines: Composites Phase 2

OPPORTUNITY

- Unlock a step change in device capacity by utilising composite materials
- Deliver the next generation wind turbine components in the UK
- Support the growth of the UK manufacturing capacity for offshore wind
- Offshore Renewable Energy (ORE) Catapult and the National Composites Centre (NCC)

UK Manufacturing Technology for Next generation Wind Turbines: Composites Phase 2

Phase 1: Concept and Feasibility	Phase 2: Detailed analysis and design	Phase 3: Design for Manufacture, Prototype and Testing
 Scope Outline requirements for sub-systems and components for 20MW device High level technical assessment of HVDM opportunity for material and manufacturing changes Produce detailed business case of specific components Business case and proposal for Phase 2. 	 Scope Updated 20MW reference device Further design and analysis of specific components identified in Phase 1 Industry and supply chain engagement to support development and delivery Business case and proposal for Phase 3 Preliminary plan for validation/testing of components at scale 	 Scope Manufacturing development for sub-scale components for relevant component work-streams Manufacturing development for full scale technology demonstrator Testing and validation of sub-scale components and full-scale demonstrator Support knowledge transfer and upskilling of UK supply chain to enable adoption of technology
 Outputs Initial reference device parameters (20MW) Feasibility review of components completed Component and programme level business cases for further development completed. 	 Outputs Preliminary design packs for components Solutions developed for technology gaps. Component and programme level business case for prototype manufacture produced. Critical stakeholders engaged 	 Outputs Prototype components manufactured in the UK (scaled / full scale) Components validated / tested. Technology embedded in UK industry & able to commercialise

